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Abstract: Smoke plumes pose one of the largest threats in wildfire emergencies due to their capacity to 1

carry embers and particulate matter over large distances. However, they can also be crucial in fighting 2

wildfires due to their capability to provide information on wildfire parameters from vegetation to fire 3

intensity, emphasizing the importance of having 3-dimensional models and predictions of smoke 4

plumes. Previous studies have established methods to simulate these smoke plumes, but have 5

encountered real-world limited accuracy due to a lack of information on input vectors such as wind 6

or temperature, which significantly impact plume prediction accuracy. This study addresses these 7

limitations by matching forecasts of smoke plume with observed imagery through optimizing input 8

vectors. First, smoke plumes are generated with the Navier-Stokes equations based on historical fire 9

perimeters with known weather vectors, and Levenberg-Marquardt is run to fit the simulated smoke 10

plume to the calibrated imagery by fine-tuning the input vectors. Such an optimization of the smoke 11

plume model promises not only an increased accuracy of smoke plume prediction, but also provides 12

crucial information on weather vectors that allows for other forms of forecast. 13

Keywords: smoke; photogrammetry; optimization; imagery; simulations; wildfires 14

1. Introduction 15

Wildfires have increased in frequency and intensity, creating greater smoke plume 16

emissions, leading to the degradation of global atmospheric quality [1]. This increase in 17

emissions poses a critical public health issue, as wildfire emissions contain particulates like 18

PM2.5 that are associated with cardiovascular and respiratory illnesses [2–5], attributable 19

to 339,000 deaths annually [7]. In addition, due to the indoor restrictions poor air quality 20

may impose, wildfire emissions have caused a significant decrease in civilian mental health 21

[6]. Finally, wildfire smoke emissions also serve as both a precursor for O3 emissions and 22

aerosol light absorbance in the atmosphere [8]. Given the significant atmospheric and 23

public health implications posed by smoke plume emission, understanding their emission 24

and composition through construction of said smoke plume poses a relevant problem. 25

The predominant way to construct smoke plumes is through physical models which 26

take meteorological and geographical factors - e.g. elevation, temperature, humidity - 27

as input [10–13]. Given the limited granularity of certain input vectors, especially the 28

spatial and temporal resolution of wind speeds at different elevations [13,14], smoke 29

plumes may experience limited accuracy during simulation. Parameter-space exploration 30

of computational fluid dynamics (CFD) based smoke plume and cloud simulations show 31

that large relative variations of input vectors can greatly alter the composition of the 32

geometry of smoke plumes [15,16], emphasizing the necessity of precise atmospheric data 33

in these simulations. 34

Satellite images of smoke plumes - automatically identified and segmented in surveil- 35

lance footage [17–19] - have frequently been used to verify the aforementioned physical 36
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models [11,12]. HYSPLIT - NOAA’s smoke emission model - utilizes this abundance of 37

smoke plume satellite segmentation data to fine-tune smoke plume emission locations 38

by minimizing the error between observed imagery and predicted values [20]. While 39

computationally efficient and accurate, the optimization poses two problems: (1) the study 40

does not provide methodology to optimize parameters outside location and (2) limited 41

spatial and/or temporal resolution of satellite imagery [21,22], the study focuses on smoke 42

plumes spanning a large geographic region. Since ground-based imagery - like cellphones 43

and mounted cameras - that are capable of multi-media recording are ubiquitous [23,24], 44

this study attempts to remediate both problems by (1) creating a framework that allows 45

other meteorological parameters like wind speed and temperature to be optimized and (2) 46

utilizing ground-based imagery as the basis for optimization rather than satellite imagery. 47

The study first provides a hybrid Lagrangian-Eulerian computational fluid dynamic 48

model evaluated on preliminary guesses of meteorological information taken from nearby 49

weather stations. Then, Levenberg-Marquardt - a variant of gradient descent - reduces 50

the difference between predicted simulations and observed ground-based imagery by 51

approximating derivatives with respect to a defined error function. The effectiveness of 52

such optimizations is tested on two metrics: (1) the difference between observed and 53

predicted imagery and (2) the ability for the algorithm to converge onto crucial smoke 54

plume parameters. Given the abundance of mounted cameras in California in the form 55

of a surveillance database ALERTCalifornia [24], this study’s scope will primarily be 56

concentrated in the Western coast of the United States. 57

We will present the remaining content of this paper as follows: Section 2 will present 58

the equations necessary to simulate and optimize the smoke plume and an algorithm to 59

utilize the aforementioned equations. In Section 3, the accuracy of the algorithm evaluated 60

on 7 wildfire incidents and its optimal use cases will be presented. Lastly, Section 4 contains 61

the conclusion. 62

2. Materials and Methods 63

2.1. Fluid Dynamics Simulation 64

When a fuel cell undergoes combustion, it rapidly loses mass. The mass in a particular 65

area in a discretized grid can be defined as m : (x, y, z, t) → s, where s is a scalar value. 66

Given information about fuel and vapor content, the mass loss of a fuel cell (m′), the heat 67

of combustion (∆H), and the rate of heat release (Q′) can be represented as 68

∆H =
Q′

m′
(1)

for each fuel cell undergoing combustion. From Rothermel’s fire spread model [25], for a 69

cell m(x, y, z) that is going through combustion, 70

dm
dt

= Γ′m0ηmηs (2)

= 0.417Γ′m0[1− 2.59(
qv

Mx
) + 5.11(

qv

Mx
)2 − 3.52(

qv

Mx
)3] (3)

Γ′ = Γ′max(
β

βopt
)A exp[A(1− β

βopt
)] (4)

βopt = 3.348σ−0.8189 (5)

A = 133σ−0.77913 (6)

β =
m0

32δ
(7)

where σ is surface area to volume ratio ( 1
m ), m0 represents the initial fuel bed mass ( kg

m2 ), δ is 71

the fuel bed depth (m), and qv a dimensionless ratio of atmospheric vapor content (defined 72

more formally later in the section), all of which are defined value for every discretized cell. 73

Otherwise, if a fuel cell isn’t undergoing combustion, dm
dt = 0. 74
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We can also account for the smoke plume emission with respect to both the evaporation 75

and mass loss. The smoke plume scalar field, defined as qs : (x, y, z, t)→ qs(x, y, z, t), can 76

be calculated as 77

∂qs

∂t
+ u ·▽qs = −

dm
dt

(sM + sWcWM) (8)

as shown by [13]. For each smoke scalar value s in the discretized grid qs, ⌊s⌋ points is 78

generated in each location, where the set of all smoke plume points are defined as Qs. 79

Next, given the rate of mass fuel loss, the module temperature of each fuel cell - 80

defined as TM : (x, y, z, t)→ TM(x, y, z, t) - can computed. Therefore, from the equations 81

provided in [13], the combustion heat of each discretized cell can be derived as 82

S(x) =
x

x + 0.7(1− x)
(9)

µ(u) = (µmax − 1)/S(u/ure f )− 1 (10)

TM = (T1 − T0)S−1(
[ dm

dt ]

µ(u)cA
) + T0 (11)

where T0 = 150◦C and T1 = 450◦C. Note that S(x) is an invertible interpolation function 83

that transitions values [0, 1] for temperatures between [T0, T1] created solely for the purpose 84

of this derivation. 85

Given the possibility of pyrocumulus clouds, clouds produced by wildfires that are 86

highly visible in camera imagery [26], water evaporation and content needs to be taken into 87

account. Let qv, qr, qc be three discretized scalar fields defined as vapor content, rain, and 88

condensation, respectively. More formally, qv : (x, y, z, t) → qv(x, y, z, t), qc : (x, y, z, t) → 89

qc(x, y, z, t), and qr : (x, y, z, t) → qr(x, y, z, t). In that case, the change in the three scalar 90

fields can be defined as 91

∂qv

∂t
+ u ·▽qv = −Cc + Ec + Er + Vr (12)

∂qr

∂t
+ u ·▽qr = Cc − Ec − Ac − Kc (13)

∂qc

∂t
+ u ·▽qc = Ac + Kc − Er −Vr (14)

such that 92

Ec − Cc = min(qv,sat − qv, qc) (15)

Ac = βA max(qc − aT) (16)

Kc = βKqcqr (17)

Er = qrw max(qv,sat − qv, 0) (18)

where w, βA, βK are dimensionless evaporation, accretion, and condensation parameters 93

[27]. For each scalar value s of qv, qc, qr, ⌊s⌋ points are created at each discretized grid 94

cell. All the points generated by qv, qc, qr are defined as Qv, Qc, Qr, respectively. qv,sat, the 95

amount of water content an air particle can hold, is defined as 96

qv,sat(T, p) =
380.16

p
exp(

17.67T
T + 243.5

) (19)

where T is temperature in Celsius, and p is the pressure in Pascals [16]. 97
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Finally, we can define wind as a vector-field, denoted as u : (x, y, z, t) → u(x, y, z, t). 98

The temporal evolution of the wind field can be described by the Navier-Stokes equation 99

such that 100

∂u
∂t

+ u ·▽u = ν▽2u− 1
ρ
▽p +

f⃗ + B⃗
ρ

(20)

where p is a pressure field p : (x, y, z, t) → p(x, y, z, t), ν as the viscosity of wind, ρ as 101

wind density, and f⃗ + B⃗ as external wind vectors [28]. To enforce the incompressibility 102

assumption of Equation 20, 103

▽ · u = 0 (21)

is enforced, ensuring the conservation of momentum. Note that pyroculumus clouds 104

generated by smoke plumes frequently exhibit anvil-like conditions, similar to a supercell 105

cloud. Thus, buoyancy is defined as the following [16] such that it results in observed 106

anvil-like formations: 107

⃗B(z) = g(1.607
Tth(z)
T(z)

) (22)

Finally, the thermal packet and the background temperature can be defined as 108

T(z) = T0 + T′(min(z, z0))− T′(max(z− z0, 0)) (23)

Tth(z) = T(0)(
p(z)
p(0)

) (24)

p(z) = (1− 0.0065
h

T(0)
)5.2561 (25)

such that T′ is the temperature slope and 2z0 is the roof of the cloud anvil [16]. 109

2.2. Optimization 110

After creating a Lagrangian-Eulerian hybrid smoke plume model, its parameters need 111

to be optimized. Since the objective of the study is to optimize for smoke plume parameters 112

with ground-based images, image plane I = (R, T, I) needs to be defined such that R = 113

(α, β, γ) (representing the pan, tilt, and roll of the camera), T = (x, y, z) (representing the 114

Earth-Centered-Earth-Fixed coordinates of the camera), and I = ( f , [px, py]) (representing 115

the focal point, f , and the principal point offset of the camera, px, py). A change-in-basis 116

to convert global ECEF (Earth-Centerd-Earth-Fixed) coordinates would be done through 117

transformation matrix MT such that 118

u⃗ =
[
x y z

]
t⃗ = u⃗×

[
0 0 −1

]
r⃗ = u⃗× t⃗

MT =

[
f⃗
| f⃗ |

t⃗
|⃗t|

u⃗
|u⃗|

]
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For an arbitrary set of points S, the operation Ṡ on set S = {p1, p2, ..., pn} to transform 119

set S from global ECEF coordinates to image plane coordinates is defined as 120

Rx(α) =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 (26)

Ry(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(α)

 (27)

Rz(γ) =

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 (28)

C(p) =
p⃗MT Rx(α)Ry(β)Rz(γ)

f
(29)

Ṡ = {(C(p)1

C(p)3
,

C(p)2

C(p)3
)|∀p ∈ S} (30)

where ⃗C(p)n = {x, y, z} denotes the nth component of vector C(p). 121

Before any accuracy evaluation can be completed, a segmentation of the image should 122

be performed. For the purposes of this study, the segmentation was completed manually, 123

where a polygon containing the smoke plume from the image was cropped out as seen 124

in Figure 1. Let the set of pixels contained in image I’s segmentation be denoted as 125

ΩI = {(x1, y1), (x2, y2), ...(xn, yn)}. 126

Figure 1. On the left, there is an uncropped image of a smoke plume. Note that portions of the image
that display private property is blacked out. On the right is the segment of the plume being manually
cropped out.

To evaluate the accuracy of the smoke plume simulation, after running the compu- 127

tational fluid simulation for 10 iterations on a (15, 15, 25) discretized grid, each point is 128

projected onto the camera, with their global coordinates converted to (u, v) pixel coordi- 129

nates. Each point on the picture is either inside or outside the segmentation; thus, if a 130

projected point were to fall onto a point where a pixel falls outside the segmentation or 131

if no projected point falls onto a pixel within the segmentation, a score of 1 is added to a 132

total T, which Levenberg-Marquardt attempts to find the global minimum for. For a set of 133

points P, let the total score for the evaluation be defined as 134

S(P, ΩI) (31)

An example is shown in Figure 2. 135
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Figure 2. In the top left corner, the pixel is in the segmentation; however, no point is in the pixel.
Thus, it adds a score of 1. In the top right corner, the pixel isn’t in the pixel, adding a score of 1. In the
bottom left corner, no point is in the non-segmented pixel and in the bottom right corner, there is a
point in the segmented pixel. Thus, the total score is 2.

Since the optimization of every single discretized cell for mass/wind values would 136

scale cubically with cell discretization values, for both the wind and mass matrices, non- 137

negative matrix factorization (NNMF) is performed to reduce the dimensionality of each 138

matrix to ensure a linear scaling of runtime. The algorithm approximates an original matrix 139

M by factoring it into two other distinct, non-negative matrices. 140

To perform the factorization, a constant c is first selected, splitting a matrix M into c 141

equal components, M1, M2, ..., Mc. For each component Mi, NMMF is performed to reduce 142

Mi = Ii ×Oi, giving us sets 143

M′ = {I1, I2, ..., Ic} (32)

M′′ =
c⋃

x=1

{Ox,i,j|∀i, j ≤ c} (33)

to be used for optimization. NMMF is performed on matrices fext,x, fext,y, fext,z, m. 144

Finally, the parameter set κ = {z0, T′}∪ f ′′ext,x ∪ f ′′ext,y ∪m′′ is optimized with Levenberg- 145

Marquadt by first defining a Jacobian matrix, such that 146

Ji,j =
∂Si
∂κ

(34)

and update each value in κ with a Levenberg-Marquardt iteration [29], defined as 147

κ′ = −[JT J + λdiag(JT J)]−1 JTS(Qs ∪Qc, ΩI) (35)

For further clarification, algorithm A1 is provided in the Appendix for the optimization 148

step of a single camera. 149

3. Results and Discussion 150

3.1. Simulation Design 151

This study was focused in California due to both the abnormal frequency of fires and 152

the presence of an extensive surveillance network in the form of mounted cameras called 153

ALERTCalifornia. Fire perimeters were scraped from SimTable’s Fire Progressions database, 154

which contains fire perimeter rasters with respect to time. 53 wildfires were automatically 155

selected based on proximity to the camera network, which was then manually narrowed 156

down to only 7 wildfires based on visibility of smoke plumes. 157

Initial inputs for metereological data was obtained from NOAA’s National Weather 158

Service, providing historical data for humidity, wind angle, wind intensity, and surface 159

temperature [30]. Every value in the discretized grid - both for temperature and wind 160

vectors - were homogeneous. 161

Next, fuel parameters were taken from vegetation surveys of the different wildfire 162

burn areas. Parameters for each of the wildfires are shown in Table 1. In addition, variables 163

were set to the following: βA = 0.2, βK = 0.4, w = 0.6, σ = 3734 1
m , δ = 1m, c = 2 for all the 164

wildfires listed in the table. 165
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Table 1. The table shows each incident simulated and the initialized parameters for each incident.

Wildfire
Name [32]

Wind
Direction

[30]

Wind
Speed

(mph) [30]

Fuel
Density

(kg/m^2)
[31]

Burn Time
[32]

Surface
Temp (F)

[30]

Weather
Station [30]

Fairview East 15 10.418 5d 9h 70 Ontario
A/P

Mosquito South 27 7.406 45d 8h 63 Sacramento
A/P

Oak Northwest 6.7 2.323 43d 2h 93 Merced
A/P

Electra West 8.2 4.689 24d 9h 74 Stockton
A/P

Summit Northwest 8.4 2.959 9d 16h 83 Visalia
A/P

Kelly Southwest 11 12.29 26d 22h 57 Saguache
A/P

Smith
River West 22 12.29 94d 11h 48 Saguache

A/P

Finally, the wind angle, z0, and density m parameters were given an offset of 2km, 90◦, 166

and 3 kg
m2 respectively. These parameters were chosen as they have the most significant effect 167

on the composition on wildfire smoke plume composition [15], and were given an offset to 168

ensure that the algorithm will eventually converge parameters to the original values. 169

3.2. Error Optimization 170

Each smoke plume incident was simulated for 20 iterations (at a timeout of 2h) and 171

for each iteration, the objective function S was re-evaluated against a singular camera. To 172

calculate the partial derivatives as described in Equation 34, the study employed 15 parallel 173

CPUs for 75variables. After calculating the error for each iteration, a score as shown in 174

Figure 2 was calculated. As seen in Figure 4, for the Mosquito, Electra, and Oak fires, where 175

the most camera information was concentrated, Levenberg-Marquardt managed to reduce 176

the error up to 10-23 times. 177

However, for 4 other incidents, the cameras were unable to reduce the value of the 178

error. In addition, the error for some cameras converged in fewer iterations and at a much 179

faster rate than the others. There are two primary reasons for an inability to reduce error 180

efficiently: the camera isn’t able to view the wildfire or the wildfire is too small. As seen 181

in Figure 3, given that the R value of the linear regression between the amount of area 182

taken up by the segmentation relative to the resolution of the screen and the ability for 183

Levenberg-Marquardt to optimize smoke plume parameters is R = −0.829, a failure to 184

view a smoke plume at a sufficient size explains the failure of photogrammetry-based 185

methods. In other words, relative to the resolution of the image, the space took up by the 186

smoke plume was too small to evaluate. Similarly, the size of the wildfire, the distance from 187

said wildfires, and the area burned seem to have no effect on the efficiency of the algorithm, 188

with all of them having R values not exceeding ±0.2. 189

Since the position of a pixel and thus the projected size of the smoke plume are 190

functions of the three factors - emission location (and thus, size), position and zoom 191

(Equation 30) - note that none of the factors alone can determine the efficacy of Levenberg- 192

Marquardt. In other words, with a camera with sufficient zoom, a smoke plume can be 193

optimized with the aforementioned methodology. 194

Another reason for a lack in covergence for certain cameras shown in 3 is due to the 195

fact that when a partial derivative that composes the Jacobian - shown in Equation 34 - is 196

calculated, given that S is small, Ji,j ≈ 0, giving κi ≈ 0. The aforementioned result also 197

explains the different convergence rates as shown in Figure 4; given a smaller domain of S 198

(i.e. a smaller smoke plume relative to the resolution), Ji,j =
∂S
∂ will also be small, reducing 199
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the size of κi. Therefore, for optimal use of the proposed methodology, the smoke plume 200

should ideally cover at least half of the screen or more. 201

(a) (b)

(c) (d)

Figure 3. In subfigures (a)-(d), different factors are taken into account to try and explain an inability
for gradient descent to optimize for wildfire parameters. As seen above, distance from the wildfire,
zoom, and size of the wildfire have no correlation with the ability of Levenberg-Marquardt to reach a
local minimum.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4. Figures (a)-(g) display optimizations for each fire; as shown in the Figure, in only 20
iterations of the Levenberg-Marquardt algorithm, we were able to reduce the error up to 20x for
certain wildfires. However, about half the optimizations did not result in a significantly lower error.
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3.2.1. Parameter Evaluation 202

The three incidents of interest - the Mosquito, Electra, and Oak Fires - are now studied 203

here to evaluate how close they approximate the hidden, correct parameters from an initial, 204

modified parameter in order to ensure correctness of the optimization. These three incidents 205

were chosen as they each had multiple cameras that managed to reduce significantly in 206

error. As seen in Figure 5, each camera managed to converge onto the wind parameter in a 207

few iterations. However, note that the wind angle was not able to converge precisely on 208

the actual value. This is because at far distances, smoke plume composition isn’t affected 209

by small changes (< 10◦) in wind angle. 210

An advantage of optimizing wind parameters is not only increase in accuracy, but 211

also an availability of more granular metereological information nearby the wildfire. As a 212

comparison, note the wind vectors on the ground layer of the Oak Fire in Figure 6. While 213

the wind parameters were initialized at 100◦, after 10 iterations, the wind was not only 214

reverted to 90◦, but different intensities of wind at different points of the discretized grid 215

were also measured. Given the computational restrictions of the current study, such a 216

potential increase in metereological granularity not only provides greater smoke plume re- 217

construction capabilities, but allows greater accuracy in other metereological performances 218

that rely on wind. 219

(a) (b)

(c)

Figure 5. In subfigures (a)-(c), in each iteration, the average wind direction was recorded and are
plotted on the graph. The dotted line in each graph represents the actual wind angle, while the solid
line shows the predicted wind angles based on the observed iamgery.

A similar evaluation for z0, the point of temperature gradient inversion, was also 220

conducted. As seen in Figure 7, based on an initial, erroneous inversion point, Levenberg- 221

Marquardt was able to converge onto the correct elevation. However, a weakness with 222

this algorithm was exposed with the elevation convergence for the Mosquito fire; while 223

z0 was starting to converge to 18 km on iteration 10, z0 suddenly increased back to its 224
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original value. (cite) If a Levenberg-Marquardt - or another gradient descent algorithm 225

- were to terminate early, the final parameters for the smoke plume could be erroneous. 226

Since such erroneous values are eventually resolved by iteration 20, we recommend to run 227

the gradient-descent algorithm for at least 15− 20 iterations. 228

Finally, a similar procedure was conducted on the density of fuel, where each cell was 229

optimized with NNMF. Surprisingly, the mass of the fuel had no effect on the apparent 230

visual appearance of the smoke plume, as seen in Figure 8, where any apparent changes 231

to fuel density didn’t result in the change of error. A potential reason for this is that the 232

emission rate of a smoke plume does not drastically affect S. The proposed algorithm does 233

not account for transparency of the smoke plume; while a greater emission rate would 234

result in a much more opaque smoke plume, the manual segmentation does not make such 235

a distinction. 236

(a) (b)

Figure 6. Subfigure (a) shows the wind vectors at ground level before optimization, while Subfigure
(b) shows the vectors after optimization with Levenberg-Marquardt.

An example of a smoke plume being optimized is shown in Figure 9; as seen, the 237

smoke plume is first initialized with parameters such that it does not approximate the 238

image as shown. However, after 20 iterations, as seen, the smoke plume starts to come 239

closer to what is seen in the image. Note that there still exists slight error between the 240

observed imagery and the predicted model: the physical simulation has an anvil-like 241

formation on the top of the pyrocumulus cloud, whereas the observed imagery does not. 242

Although a slight error that occured due to a slight underestimation of z0, it still shows that 243

the accuracy of the physical simulations leave room for improvement with more iterations 244

of Levenberg-Marquardt. 245
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(a) (b)

(c)

Figure 7. In subfigures (a)-(c), in each iteration, the average wind direction was recorded and are
plotted on the graph.

(a) (b)

(c)

Figure 8. In subfigures (a)-(c), in each iteration, the average density was recorded and are plotted on
the graph.
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(a) (b)

(c)

Figure 9. Subfigure (a) shows the 3D reconstruction of a smoke plume before optimization by
Levenberg-Marquardt. Subfigure (b) shows the optimized smoke plume evaluated on the image
shown in subfigure (c)

4. Conclusions 246

This paper proposed a methodology that optimizes smoke plume parameters by 247

comparing it with images. Through tests with a total of 7 wildfires and 21 cameras, this 248

study has established that 249

1. Given a sufficient amount of space taken up by a smoke plume, Levenberg-Marquardt 250

can reduce the error between the observed imagery and predicted physical simulation. 251

Such efficiency isn’t related to the zoom or position of the camera, or even the size of 252

the fire, but rather, the area of the smoke plume captured in the image. 253

2. Levenberg-Marquardt, in conjunction with imagery, can provide a more granular 254

output on wind and weather parameters, as seen by the ability of the Levenberg- 255

Marquardt algorithm to be able to optimize both fext and z0 given a huge error. 256
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Appendix A Algorithm to Optimize Per Camera 270

Algorithm A1 Optimization Algorithm
Data: z0, w, βA, βK, fext, T′, m0, σ, δ, I
Result: Qs ∪Qc
Qr, Qc, Qv, Qs ← [],[],[],[]
qr, qc, qv, qs ← [[[0, 0, ...], ...], ...],[[[0, 0, ...], ...], ...],[[[0, 0, ...], ...], ...],[[[0, 0, ...], ...], ...]
λ← 0.1
u← [[[[0, 0, 0], ...], ...], ...]
preverror← ∞
for step← 0 to 20 do

for i← 0 to 10 do
m← m− getmass(δ, σ, qv) ; // (Eqn 2)
u← updatewind(u) ; // (Eqn 20)
u← incompressibility(u) ; // (Eqn 21)
Qr, Qv, Qc, qr, qv, qc ← kessler(qr, qv, qc, Qr, Qv, Qc) ; // (Eqn 12 - 18)
T ← temp(dm, u) ; // (Eqn 11)
B← buoyancy(m, T) ; // (Eqn 22)
u← u + fext + B
qv, qr, qc, qs ← advect(qv, qr, qc, qs, u)
Qv, Qr, Qc, Qs ← convert(qv, qs, qc, qs)

end
Qs, Qr, Qc, Qv ← Q̇s, Q̇r, Q̇v, Q̇c ; // (Eqn 30)
f ′′ext,x, f ′′ext,y, f ′′ext,z, m′′ ← factor( fext,x, fext,y, fext,z, m) ; // (Eqn 33)
J ← jacobian({z0, T′} ∪ f ′′ext,x ∪ f ′′ext,y ∪ f ′′ext,z ∪m′′) ; // (Eqn 34)
error← S(Qc ∪Qs, ΩI) ; // (Eqn 31)
κ ← step(J, ) ; // (Eqn 35)
if error < preverror then

z0, T′, f ′′ext,x, f ′′ext,y, f ′′ext,z, m′′ ← z0 + κ[0], T′ + κ[1], f ′′ext,x + κ[2 : | f ′′ext,x|+ 2],+ f ′′ext,y +

κ[| f ′′ext,y| + 2 : | f ′′ext,x| + 2 + | f ′′ext,y|], f ′′ext,z + κ[ f ′′ext,x| + 2 + | f ′′ext,y| : −|m′′|], m′′ +
κ[−|m′′| :]

preverror← error
λ← λ ∗ 2

else
λ← λ/3

end
end
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