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Abstract: The Transactional Interpretation of quantum mechanics exploits the intrinsic time-symmetry
of wave mechanics to interpret the ψ and ψ* wave functions present in all wave mechanics calculations
as representing retarded and advanced waves moving in opposite time directions that form a
quantum “handshake” or transaction. This handshake is a 4D standing-wave that builds up across
space-time to transfer the conserved quantities of energy, momentum, and angular momentum in
an interaction. Here, we derive a two-atom quantum formalism describing a transaction. We show
that the bi-directional electromagnetic coupling between atoms can be factored into a matched pair
of vector potential Green’s functions: one retarded and one advanced, and that this combination
uniquely enforces the conservation of energy in a transaction. Thus factored, the single-electron wave
functions of electromagnetically-coupled atoms can be analyzed using Schrödinger’s original wave
mechanics. The technique generalizes to any number of electromagnetically coupled single-electron
states—no higher-dimensional space is needed. Using this technique, we show a worked example
of the transfer of energy from a hydrogen atom in an excited state to a nearby hydrogen atom in
its ground state. It is seen that the initial exchange creates a dynamically unstable situation that
avalanches to the completed transaction, demonstrating that wave function collapse, considered
mysterious in the literature, can be implemented with solutions of Schrödinger’s original wave
mechanics, coupled by this unique combination of retarded/advanced vector potentials, without the
introduction of any additional mechanism or formalism. We also analyze a simplified version of the
photon-splitting and Freedman–Clauser three-electron experiments and show that their results can
be predicted by this formalism.

Keywords: quantum mechanics; transaction; Wheeler–Feynman; transactional interpretation;
handshake; advanced; retarded; wave function collapse; collapse mechanism; EPR; HBT; Jaynes;
NCT; split photon; Freedman–Clauser; nonlocality; entanglement

1. Introduction

Quantum mechanics (QM) was never properly finished. Instead, it was left in an exceedingly
unsatisfactory state by its founders. Many attempts by highly qualified individuals to improve the
situation have failed to produce any consensus about either (a) the precise nature of the problem,
or (b) what a better form of QM might look like.

At the most basic level, a simple observation illustrates the central conceptual problem:
An excited atom somewhere in the universe transfers all of its excitation energy to another single

atom, independent of the presence of the vast number of alternative atoms that could have received all
or part of the energy. The obvious “photon-as-particle” interpretation of this situation has a one-way
symmetry: The excited source atom is depicted as emitting a particle, a photon of electromagnetic
energy that is somehow oscillating with angular frequency ω while moving in a particular direction.
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The photon is depicted as carrying a quantum of energy h̄ω, a momentum h̄ω/c, and an angular
momentum h̄ through space, until it is later absorbed by some unexcited atom. The emission and
absorption are treated as independent isolated events without internal structure. It is insisted that the
only real and meaningful quantities describing this process are probabilities, since these are measurable.
The necessarily abrupt change in the quantum wave function of the system when the photon arrives
(and an observer potentially gains information) is called “wave function collapse” and is considered
to be a mysterious process that the founders of QM found it necessary to “put in by hand” without
providing any mechanism. [The missing mechanism behind wave function collapse is sometimes
called “the measurement problem”, particularly by acolytes of Heisenberg’s knowledge interpretation.
In our view, measurement requires wave function collapse but does not cause it.] [Side comments will
be put in square brackets]

Referring to statistical quantum theory, which is reputed to apply only to ensembles of similar
systems, Albert Einstein [1] had this to say:

“I do not believe that this fundamental concept will provide a useful basis for the whole of physics.”

“I am, in fact, firmly convinced that the essentially statistical character of contemporary quantum
theory is solely to be ascribed to the fact that this [theory] operates with an incomplete description of
physical systems.”

“One arrives at very implausible theoretical conceptions, if one attempts to maintain the thesis that the
statistical quantum theory is in principle capable of producing a complete description of an individual
physical system ...”

“Roughly stated, the conclusion is this: Within the framework of statistical quantum theory, there is
no such thing as a complete description of the individual system. More cautiously, it might be put
as follows: The attempt to conceive the quantum-theoretical description as the complete description
of the individual systems leads to unnatural theoretical interpretations, which become immediately
unnecessary if one accepts the interpretation that the description refers to ensembles of systems and
not to individual systems. In that case, the whole ’egg-walking’ performed in order to avoid the
’physically real’ becomes superfluous. There exists, however, a simple psychological reason for the
fact that this most nearly obvious interpretation is being shunned—for, if the statistical quantum
theory does not pretend to describe the individual system (and its development in time) completely,
it appears unavoidable to look elsewhere for a complete description of the individual system. In doing
so, it would be clear from the very beginning that the elements of such a description are not contained
within the conceptual scheme of the statistical quantum theory. With this. one would admit that,
in principle, this scheme could not serve as the basis of theoretical physics. Assuming the success of
efforts to accomplish a complete physical description, the statistical quantum theory would, within the
framework of future physics, take an approximately analogous position to the statistical mechanics
within the framework of classical mechanics. I am rather firmly convinced that the development of
theoretical physics will be of this type, but the path will be lengthy and difficult.”

“If it should be possible to move forward to a complete description, it is likely that the laws would
represent relations among all the conceptual elements of this description which, per se, have nothing
to do with statistics.”

In what follows we put forth a simple approach to describing the individual system (and its
development in time), which Einstein believed was missing from statistical quantum theory and which
must be present before any theory of physics could be considered to be complete.

The way forward was suggested by the phenomenon of entanglement. Over the past few
decades, many increasingly exquisite Einstein–Podolsky–Rosen [2] (EPR) experiments [3–11] have
demonstrated that multi-body quantum systems with separated components that are subject to
conservation laws exhibit a property called “quantum entanglement” [12]: Their component wave
functions are inextricably locked together, and they display a nonlocal correlated behavior enforced
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over an arbitrary interval of space-time without any hint of an underlying mechanism or any show of
respect for our cherished classical “arrow of time.” Entanglement is the most mysterious of the many
so-called “quantum mysteries.”

It has thus become clear that the quantum transfer of energy must have quite a different symmetry
from that implied by this simple “photon-as-particle” interpretation. Within the framework of
statistical QM, the intrinsic symmetry of the energy transfer and the mechanisms behind wave function
collapse and entanglement have been greatly clarified by the Transactional Interpretation of quantum
mechanics (TI), developed over several decades by one of us and recently described in some detail
in the book The Quantum Handshake [12]. [We note that Ruth Kastner has extended her “probabilist”
variant of the TI, which embraces the Heisenberg/probability view and characterizes transactions as
events in many-dimensional Hilbert space, into the quantum-relativistic domain [13,14] and has used
it to extend and enhance the “decoherence” approach to quantum interpretation [15]].

This paper begins with a tutorial review of the TI approach to a credible photon mechanism
developed in the book Collective Electrodynamics [16], followed by a deeper dive into the
electrodynamics of the quantum handshake, and finally includes descriptions of several historic
experiments that have excluded entire classes of theories. We conclude that the approach described
here has not been excluded by any experiment to date.

1.1. Wheeler–Feynman Electrodynamics

The Transactional Interpretation was inspired by classical time-symmetric Wheeler–Feynman
electrodynamics [17,18] (WFE), sometimes called “absorber theory.” Basically, WFE assumes that
electrodynamics must be time-symmetric, with equally valid retarded waves (that arrive after they
are emitted) and advanced waves (that arrive before they are emitted). WFE describes a “handshake”
process accounting for emission recoil in which the emission of a retarded wave stimulates a future
absorber to produce an advanced wave that arrives back at the emitter at the instant of emission.
WFE is based on electrodynamic time symmetry and has been shown to be completely interchangeable
with conventional classical electrodynamics in its predictions.

WFE asserts that the breaking of the intrinsic time-symmetry to produce the electromagnetic
arrow of time, i.e., the observed dominance of retarded radiation and absence of advanced radiation
in the universe, arises from the presence of more absorption in the future than in the past. In an
expanding universe, that assertion is questionable. One of us has suggested an alternative cosmological
explanation [19], which employs advanced-wave termination and reflection from the singularity of the
Big Bang.

1.2. The Transactional Interpretation of Quantum Mechanics

The Transactional Interpretation of quantum mechanics [12] takes the concept of a WFE handshake
from the classical regime into the quantum realm of photons and massive particles. The retarded
and advanced waves of WFE become the quantum wave functions ψ and ψ*. Note that the complex
conjugation of ψ* is in effect the application of the Wigner time-reversal operator, thus representing an
advanced wave function that carries negative energy from the present to the past.

Let us here clarify what an interpretation of quantum mechanics actually is. An interpretation
serves the function of explaining and clarifying the formalism and procedures of its theory.
In our view, the mathematics is (and should be) exclusively contained in the formalism itself.
The interpretation should not introduce additional variant formalism. [We note, however, that this
principle is violated by the Bohm–de Broglie “interpretation” with its “quantum potentials” and
uncertainty-principle-violating trajectories, by the Ghirardi–Rimini–Weber “interpretation” with its
nonlinear stochastic term, and by many other so-called interpretations that take the questionable
liberty of modifying the standard QM formalism. In that sense, these are alternative variant quantum
theories, not interpretations at all.]
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The present work is a calculation describing the formation of a transaction that was inspired by
the Transactional Interpretation but has not previously been a part of it. In Section 12 below, we discuss
how the TI is impacted by this work. We use Schrödinger’s original wave mechanics formalism
with the inclusion of retarded and advanced electromagnetic four-potentials to describe and illuminate the
processes of transaction formation and the collapse of the wave function. We show that this approach
can provide a detailed mathematical description of a “quantum-jump” in which what seems to be
a photon is emitted by one hydrogen atom in an excited state and excites another hydrogen atom
initially in its ground state. Thus, the mysterious process of wave function collapse becomes just a
phenomenon involving an exchange of advanced/retarded electromagnetic waves between atomic
wave functions described by the Schrödinger formalism.

As illustrated schematically in Figure 1, the process described involves the initial existence in
each atom of a very small admixture of the wave function for the opposite state, thereby forming
two-component states in both atoms. This causes them to become weak dipole radiators oscillating at
the same difference-frequency ω0. The interaction that follows, characterized by a retarded-advanced
exchange of 4-vector potentials, leads to an exponential build-up of a transaction, resulting in the
complete transfer of one photon worth of energy h̄ω0 from one atom to the other. This process is
described in more detail below.

Figure 1. Model of transaction formation: An emitter atom 2 in a space-antisymmetric excited
state of energy E2 and an absorber atom 1 in a space-symmetric ground state of energy E1 both
have slight admixtures of the other state, giving both atoms dipole moments that oscillate with the
same difference-frequency ω0 = ω2 − ω1. If the relative phase of the initial small offer wave ψ and
confirmation wave ψ∗ is optimal, this condition initiates energy transfer, which avalanches to complete
transfer of one photon-worth of energy h̄ω0.

2. Physical Mechanism of the Transfer

The standard formalism of QM consists of a set of arbitrary rules, conventionally viewed as dealing
only with probabilities. When illuminated by the TI, that formalism hints at an underlying physical
mechanism that might be understood, in the usual sense of the concept understood. The first glimpse of
such an understanding, and of the physical nature of the transactional symmetry, was suggested
by Gilbert N. Lewis in 1926 [20,21], the same year he gave electromagnetic energy transfer the
name “photon”:

“It is generally assumed that a radiating body emits light in every direction, quite regardless of
whether there are near or distant objects which may ultimately absorb that light; in other words that it
radiates ’into space’...”

“I am going to make the contrary assumption that an atom never emits light except to another atom...”
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“I propose to eliminate the idea of mere emission of light and substitute the idea of transmission, or a
process of exchange of energy between two definite atoms... Both atoms must play coordinate and
symmetrical parts in the process of exchange...”

“In a pure geometry it would surprise us to find that a true theorem becomes false when the page
upon which the figure is drawn is turned upside down. A dissymmetry alien to the pure geometry of
relativity has been introduced by our notion of causality.”

In what follows, we demonstrate that the pair of coupled Schrödinger equations describing the
two atoms, as coupled by a relativistically correct description of the electromagnetic field, exhibit
a unique solution. This solution has exactly the symmetry of the TI and thus provides a physically
understandable mechanism for the experimentally observed behavior: Both atoms, in the words of
Lewis, “play coordinate and symmetrical parts in the process of exchange”.

The solution gives a smooth transition in each of the atomic wave functions, brought to abrupt
closure by the highly nonlinear increase in coupling as the transition proceeds. The origin of statistical
behavior and “quantum randomness” can be understood in terms of the random distribution of
wave-function amplitudes and phases provided by the perturbations of the many other potential
recipient atoms; no “hidden variables” are required. Although much remains to be done, these findings
might be viewed as a next step towards a physical understanding of the process of quantum
energy transfer.

We will close by indicating the deep, fundamental questions that we have not addressed, and that
must be understood before anything like a complete physical understanding of QM is in hand.

3. Quantum States

In 1926, Schrödinger, seeking a wave-equation description of a quantum system with mass,
adopted Planck’s notion that energy was somehow proportional to frequency together with deBroglie’s
idea that momentum was the propagation vector of a wave and crafted his wave equation for the time
evolution of the wave function Ψ [22]:

− h̄
2m i
∇2Ψ +

q V
i h̄

Ψ =
∂Ψ
∂t

. (1)

Here, V is the electrical potential, m is the electron mass, and q is the (negative) charge on the
electron. Thus, what is the meaning of the wave function Ψ that is being characterized? In modern
treatments, Ψ is called a “probability amplitude”, which has only a probabilistic interpretation. In what
follows, however, we return to Schrödinger’s original vision, which provides a detailed physical
picture of the wave function and how it interacts with other charges:

“The hypothesis that we have to admit is very simple, namely that the square of the absolute value
of Ψ is proportional to an electric density, which causes emission of light according to the laws of
ordinary electrodynamics.”

That vision has inspired generations of talented conceptual thinkers to invent solutions to technical
problems using Schrödinger’s approach. Foremost among these was Ed Jaynes who, with a number
of students and collaborators, attacked a host of quantum problems in this manner [23–30]. A great
deal of physical understanding was obtained, in particular concerning lasers and the coherent optics
made possible by them. The theory evolved rapidly and had an enabling role in the explosive progress
of that field. Indeed, the continued rapid technical progress into the present is due, in no small part,
to the understanding gained through application of the Jaynes way of thinking. A detailed review
of the progress up to 1972 was reported in a conference that year [30]. By then this class of theory
was called neoclassical (NCT) because of its use of Maxwell’s equations. While there was no question
about the utility of NCT in the conceptualization and technical realization of amazing quantum-optics
devices and their application, there was a deep concern about whether it could possibly be correct at
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the fundamental level—maybe it was just a clever bunch of hacks. The tension over this concern was a
major focus of the 1972 Third Rochester Conference on Coherence and Quantum Optics [31], and several
experiments testing NCT predictions were discussed there by Jaynes [30].

He ended his presentation this way:

“We have not commented on the beautiful experiment reported here by Clauser [32], which opens up
an entirely new area of fundamental importance to the issues facing us...”

“What it seems to boil down to is this: a perfectly harmless looking experimental fact (nonoccurence
of coincidences at 90◦), which amounts to determining a single experimental point—and with a
statistical measurement of unimpressive statistical accuracy—can, at a single stroke, throw out a
whole infinite class of alternative theories of electrodynamics, namely all local causal theories.”

“...if the experimental result is confirmed by others, then this will surely go down as one of the most
incredible intellectual achievements in the history of science, and my own work will lie in ruins.”

The experiment he was alluding to was that of Freedman and Clauser [6], and in particular to
their observaton of an essentially zero coincidence rate with crossed polarizers. The Freedman–Clauser
experiment (see Section 13.3 below), with its use of entangled photon pairs, was the vanguard
of an entire new direction in quantum physics that now goes under the rubric of Tests of Bell’s
Inequality [3,4] and/or EPR experiments [6–11]. Both the historic EPR experiment and its analysis
have been repeated many times with ever-increasing precision, and always with the same outcome:
a difinitive violaton of Bell’s inequalities. Local causal theories were dead! [Much of the literature
on violations of Bell’s inequalities in EPR experiments has unfortunately emphasized the refutation
of local hidden-variable theories. In our view, this is a regrettable historical accident attributable to Bell.
Nonlocal hidden-variable theories have been shown to be compatible with EPR results. It is locality that
has been refuted. Entangled systems exhibit correlations that can only be accomodated by quantum
nonlocality. The TI supplies the mechanism for that nonlocality.]

In fact, it was the manifest quantum nonlocality evident in the early EPR experiments of the
1970s that led to the synthesis of the transactional interpretation in the 1980s [19,33,34], designed to
compactly explain entanglement and nonlocality. This in turn led to the search for an underlying
transaction mechanism, as reported in 2000 in Collective Electrodynamics [16]. As we detail below,
the quantum handshake, as mediated by advanced/retarded electromagnetic four-potentials, provides
the effective non-locality so evident in modern versions of these EPR experiments. In Section 13,
we analyze the Freedman–Clauser experiment in detail and show that their result is a natural outcome
of our approach. Jaynes’ work does not lie in ruins—all that it needed for survival was the non-local
quantum handshake! What follows is an extension and modification of NCT using a different
non-Maxwellian form of E&M [16] and including our non-local Transactional approach. We illustrate
the approach with the simplest possible physical arrangements, described with the major goal of
conceptual understanding rather than exhaustion. Obviously, much more work needs to be done,
which we point out where appropriate.

Atoms

We will begin by visualizing the electron as Schrödinger and Jaynes did: as having a smooth
charge distribution in three-dimensional space, whose density is given by Ψ∗Ψ. There is no need for
statistics and probabilities at any point in these calculations, and none of the quantities have statistical
meaning. The probabilistic outcome of quantum experiments has the same origin as it does in all other
experiments—random perturbations beyond the control of the experimenter. We return to the topic of
probability after we have established the nature of the transaction.

For a local region of positive potential V, for example near a positive proton, the negative
electron’s wave function has a local potential energy (qV) minimum in which the electron’s wave
function can form local bound states. The spatial shape of the wave function amplitude is a trade-off
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between getting close to the proton, which lowers its potential energy, and bunching together too
much, which increases its ∇2 “kinetic energy.” Equation (1) is simply a mathematical expression of
this trade-off, a statement of the physical relation between mass, energy, and momentum in the form
of a wave equation.

A discrete set of states called eigenstates are standing-wave solutions of Equation (1) and have
the form Ψ = Re−iωt, where R and V are functions of only the spatial coordinates, and the angular
frequency ω is itself independent of time. For the hydrogen atom, the potential V = ε0qp/r, where qp

is the positive charge on the nucleus, equal in magnitude to the electron charge q. Two of the
lowest-energy solutions to Equation (1) with this potential are:

Ψ100 =
e−r
√

π
e−iω1t Ψ210 =

r e−r/2 cos(θ)
4
√

6π
e−iω2t, (2)

where the dimensionless radial coordinate r is the radial distance divided by the Bohr radius a0:

a0 ≡
4πε0h̄2

mq2 = 0.0529 nm, (3)

and θ is the azimuthal angle from the North Pole (+z axis) of the spherical coordinate system.
The spatial “shape” of the two lowest energy eigenstates for the hydrogen atom is shown in

Figure 2. Here, we focus on the excited-state wave function Ψ210 that has no angular momentum
projection on the z-axis. For the moment, we set aside the wave functions Ψ21±1, which have +1 and
−1 angular momentum z-axis projections. Because, for any single eigenstate, the electron density is
Ψ∗Ψ = ReiωtRe−iωt = R2, the charge density is not a function of time, so none of the other properties of
the wave function change with time. The individual eigenstates are thus stationary states. The lowest
energy bound eigenstate for a given form of potential minimum is called its ground state, shown on
the left in Figure 3. The corresponding charge densities are shown in Figure 4.

Figure 2. Angular dependence of the spatial wave function amplitudes for the lowest (100, left) and
next higher (210, right) states of the hydrogen atom, plotted as unit radius in spherical coordinates
from Equation (2). The 100 wave function has spherical symmetry: positive in all directions.
The 210 wave function is antisymmetric along the z-axis, as indicated by the color change. In practice,
the direction of the z-axis will be established by an external electromagnetic field, as we shall
analyze shortly.



Symmetry 2020, 12, 1373 8 of 44

-10 -5 0 5 10

0.0

0.1

0.2

0.3

0.4

0.5

z

-10 -5 0 5 10

-0.05

0.00

0.05

z

Figure 3. Wave function amplitudes Ψ for the 100 and 210 states, along the z-axis of the hydrogen atom.
The horizontal axis in all plots is the position along the z-axis in units of the Bohr radius.
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Figure 4. Contribution of x− y “slices” at position z of wave function density Ψ∗Ψ to the total charge
or mass of the 100 and 210 states of the hydrogen atom. Both curves integrate to 1.

In 1926, Schrödinger had already derived the energies and wave functions for the stationary
solutions of his equation for the hydrogen atom. His physical insight that the absolute square Ψ∗Ψ
of the wave function was the electron density had enabled him to work out the energy shifts of these
levels caused by external applied electric and magnetic fields, the expected strengths of the transitions
between pairs of energy levels, and the polarization of light from certain transitions.

These predictions could be compared directly with experimental data, which had been previously
observed but not understood. He reported that these calculations were:

“...not at all difficult, but very tedious. In spite of their tediousness, it is rather fascinating to see
all the well-known but not understood “rules” come out one after the other as the result of familiar
elementary and absolutely cogent analysis, like e.g., the fact that

∫ 2π
0 cos mφ cos nφ dφ vanishes

unless n = m. Once the hypothesis about Ψ∗Ψ has been made, no accessory hypothesis is needed or
is possible; none could help us if the “rules” did not come out correctly. However, fortunately they
do [22,35].”

The Schrödinger/Jaynes approach enables us to describe continuous quantum transitions in
an intuitively appealing way: We extend the electromagnetic coupling described in Collective
Electrodynamics [16] to the wave function of a single electron, and require only the most rudimentary
techniques of Schrödinger’s original quantum theory.

4. The Two-State System

The first two eigenstates of the Hydrogen atom, from Equation (2), form an ideal two-state system.
We refer to the 100 ground state as State 1, with wave function Ψ1 and energy E1, and to the 210 excited
state as State 2, with wave function Ψ2 and energy E2 > E1:

Ψ1 = R1e−iω1t Ψ2 = R2e−iω2t, (4)
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where ω1 = E1/h̄, ω2 = E2/h̄, and R1 and R2 are real, time-independent functions of the space
coordinates. The wave functions represent totally continuous matter waves, and all of the usual
operations involving the wave function are methods for computing properties of this continuous
distribution. The only particularly quantal assumption involved is that the wave function obeys a
normalization condition: ∫

Ψ∗Ψ dvol = 1, (5)

where the integral is taken over the entire three-dimensional volume where Ψ is non-vanishing.
[Envelope functions like R1 and R2 generally die out exponentially with distance sufficiently far from
the “region of interest”, such as an atom. Integrals like this one and those that follow in principle
extend to infinity but in practice are taken out far enough that the part being neglected is within the
tolerance of the calculation.].

Equation (5) ensures that the total charge will be a single electronic charge, and the total mass will
be a single electronic mass.

By construction, the eigenstates of the Schrödinger equation are real and orthogonal:∫
R1R2 dvol = 0. (6)

The first moment 〈z〉 of the electron distribution along the atom’s z-axis is:

〈z〉 ≡
∫

Ψ∗z Ψ dvol, (7)

In statistical treatments, 〈z〉 would be called the “expectation value of z”, whereas for our
continuous distribution it is called the “average value of z” or the “first moment of z.” The electron
wave function is a wave packet and is subject to all the Fourier properties of one, as treated at some
length in Ref. [12]. Statistical QM insisted that electrons were “point particles”, so one was no longer
able to visualize how they could exhibit interference or other wave properties, so a set of rules was
constructed to make the outcomes of statistical experiments come out right. Among these was the
uncertainty principle, which simply restated the Fourier properties of an object described by waves
in a statistical context. No statistical attributes are attached to any properties of the wave function in
this treatment.

Equation (7) gives the position of the center of negative charge of the electron wave function
relative to the positive charge on the nucleus. When multiplied by the electronic charge q, it is called
the electric dipole moment q 〈z〉 of the charge distribution of the atom:

q 〈z〉 = q
∫

Ψ∗z Ψ dvol. (8)

From Equations (7) and (4), the dipole moment for the ith eigenstate is:

q 〈zi〉 = q
∫

Ψ∗i z Ψi dvol = q
∫

R∗i z Ri dvol = q
∫

R2
i z dvol. (9)

Pure eigenstates of the system will have a definite parity, i.e., they will have wave functions with
either even symmetry [Ψ(z) = Ψ(−z)], or odd symmetry [Ψ(z) = −Ψ(−z)]. For either symmetry,
the integral over R2z vanishes, and the dipole moment is zero. We note that, even if the wave function
did not have even or odd symmetry, the dipole moment, and all higher moments as well, would be
independent of time. By their very nature, eigenstates are stationary states and can be visualized as
standing-waves—none of their physical spatial attributes can be functions of time. In order to radiate
electromagnetic energy, the charge distribution must change with time.

The notion of stationarity is the quantum answer to the original question about atoms depicted as
electrons orbiting a central nucleus like a tiny Solar System:
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Why doesn’t the electron orbiting the nucleus radiate its energy away?
In his 1917 book, The Electron, R.A. Millikan [36] anticipates the solution in his comment about the

”. . . apparent contradiction involved in the non-radiating electronic orbit—a contradiction which
would disappear, however, if the negative electron itself, when inside the atom, were a ring of some
sort, capable of expanding to various radii, and capable, only when freed from the atom, of assuming
essentially the properties of a point charge.”

Millikan was the first researcher to directly observe and measure the quantized charge on the
electron with his famous oil-drop experiment, for which he later received the Nobel prize. Ten years
before the statistical quantum theory was put in place, he had clearly seen that a continuous, symmetric
electronic charge distribution would not radiate, and that the real problem was the assumption of a
point charge.

5. Transitions

The eigenstates of the system form a complete basis set, so any behavior of the system can be
expressed by forming a linear combination (superposition) of its eigenstates.

The general form of such a superposition of our two chosen eigenstates is:

Ψ = aeiφa R1e−iω1t + beiφb R2e−iω2t, (10)

where a and b are real amplitudes, and φa and φb are real constants that determine the phases of the
oscillations ω1 and ω2.

Using ω0 = ω2 − ω1 and φ = φa − φb, the charge density ρ of the two-component-state wave
function is:

ρ = qΨ∗ Ψ
ρ

q
=
(

ae−iφa R1eiω1t + be−iφb R2eiω2t
) (

aeiφa R1e−iω1t + beiφb R2e−iω2t
)

= a2R2
1 + b2R2

2 +
(

ae−iφa beiφb e−iω0t + be−iφb aeiφa eiω0t
)

R1R2

= a2R2
1 + b2R2

2 + ab
(

ei(φb−φa) e−iω0t + ei(φa−φb) eiω0t
)

R1R2

= a2R2
1 + b2R2

2 + ab
(

e−i(ω0t−φ) + ei(ω0t+φ)
)

R1R2

= a2R2
1 + b2R2

2 + 2abR1R2 cos(ω0t + φ).

(11)

Thus, the charge density of the two-component wave function is made up of the charge densities
of the two separate wave functions, shown in Figure 4, plus a term proportional to the product of the
two wave function amplitudes. It reduces to the individual charge density of the ground state when
a = 1, b = 0 and to that of the excited state when a = 0, b = 1. The product term, shown in green in
Figure 5, is the only non-stationary term; it oscillates at the transition frequency ω0. The integral of the
total density shown in the right-hand plot is equal to 1 for any phase of the cosine term, since there is
only one electron in this two-component state.

All the Ψ∗Ψ plots represent the density of negative charge of the electron. The atom as a whole is
neutral because of the equal positive charge on the nucleus. The dipole is formed when the center of
charge of the electron wave function is displaced from the central positive charge of the nucleus.
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Figure 5. Left: Plot of the three terms in the wave-function density in Equation (11) for an equal(
a = b = 1/

√
2
)

superposition of the ground state (R2
1, blue) and first excited state (R2

2, red) of
the hydrogen atom. The green curve is a snapshot of the time-dependent R1R2 product term,
which oscillates at difference frequency ω0. Right: Snapshot of the total charge density, which is
the sum of the three curves in the left plot. The magnitudes plotted are the contribution to the total
charge in an x− y “slice” of Ψ∗Ψ at the indicated z coordinate. All plots are shown for the time such
that cos(ω0t + φ) = 1. The horizontal axis in each plot is the spatial coordinate along the z-axis of the
atom, given in units of the Bohr radius a0. Animation here [37] (see Supplementary Materials).

The two-component wave function must be normalized, since it is the state of one electron:∫
Ψ∗ Ψ dvol = 1

=
∫ (

ae−iφa R1eiω1t + be−iφb R2eiω2t
)

(
aeiφa R1e−iω1t + beiφb R2e−iω2t

)
dvol

= a2
∫

R2
1 dvol + b2

∫
R2

2dvol

+
(

ae−iφa beiφb e−iω0t + be−iφb aeiφa eiω0t
) ∫

R1R2dvol.

(12)

Recognizing from Equations (5) and (6) that the individual eigenfunctions are normalized
and orthogonal: ∫

R2
1 dvol = 1

∫
R2

2 dvol = 1
∫

R1R2 dvol = 0. (13)

Equation (12) becomes ∫
Ψ∗ Ψ dvol = 1 = a2 + b2. (14)

Thus, a2 represents the fraction of the two-component wave function made up of the lower state
Ψ1, and b2 represents the fraction made up of the upper state Ψ2. The total energy E of a system whose
wave function is a superposition of two eigenstates is:

E = a2E1 + b2E2. (15)

Using the normalization condition a2 + b2 = 1 and solving Equation (15) for b2, we obtain:

b2 =
E− E1

E2 − E1
. (16)

In other words, b2 is just the energy of the wave function, normalized to the transition
energy, and using E1 as its reference energy. Taking E1 as our zero of energy and E0 = E2 − E1,
Equation (16) becomes:

E = E0b2 ⇒ ∂E
∂t

= E0
∂
(
b2)

∂t
. (17)
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Defining:

d12 ≡ 2q
∫

R1R2 z dvol = 2q 〈z〉max , (18)

the dipole moment q 〈z〉 of such a superposition can, from Equation (11), be written:

q 〈z〉 = d12ab cos(ω0t + φ). (19)

The factor d12 we call the dipole strength for the transition. When one R is an even function of z
and the other is an odd function of z, as in the case of the 100 and 210 states of the hydrogen atom,
then d12 is nonzero, and the transition is said to be electric dipole allowed. When both R1 and R2 are
either even or odd functions of z, d12 = 0, and the transition is said to be electric dipole forbidden.

Even in this case, some other moment of the distribution generally will be nonzero, and the
transition can proceed by magnetic dipole, magnetic quadrupole, or other higher-order moments.

For now, we will concentrate on transitions that are electric dipole allowed.
We have the time dependence of the electron dipole moment q 〈z〉 from Equation (19), from which

we can derive the velocity and acceleration of the charge:

q 〈z〉 = d12ab cos(ω0t + φ)

q
∂ 〈z〉

∂t
= −ω0d12ab sin(ω0t + φ) + d12 cos(ω0t + φ)

∂(ab)
∂t

≈ −ω0d12ab sin(ω0t + φ)

q
∂2 〈z〉

∂t2 ≈ −ω2
0d12ab cos(ω0t + φ),

(20)

where the approximation arises because we will only consider situations where the coefficients a and b
change slowly with time over a large number of cycles of the transition frequency:

(
∂(ab)

∂t � ab ω0

)
.

The motion of the electron mass density endows the electron with a momentum ~p:

~p = m~v ⇒ pz = m
∂ 〈z〉

∂t
≈ −m

q
ω0d12ab sin(ω0t + φ). (21)

6. Atom in an Applied Field

Schrödinger had a detailed physical picture of the wave function, and he gave an elegant
derivation of the process underlying the change of atomic state mediated by electromagnetic coupling.
[The original derivation in Ref. [38], p. 137, is not nearly as readable as that in Schrödinger’s second
and third 1928 lectures [39], where the state transition is described in Section 9 starting at the bottom
of page 31, for which the second lecture is preparatory. There he solved the problem more generally,
including the effect of a slight detuning of the field frequency from the atom’s transition frequency.]
Instead of directly tackling the transfer of energy between two atoms, he considered the response of a
single atom to a small externally applied vector potential field ~A. He found that the immediate effect
of an applied vector potential is to change the momentum p of the electron wave function:

pz = m
∂ 〈z〉

∂t
− qAz

∂pz

∂t
= m

∂2 〈z〉
∂t2 − q

∂Az

∂t
.

(22)

Thus, the quantity −q ∂Az
∂t acts as a force, causing an acceleration of the electron wave function.

This is the physical reason that − ∂Az
∂t can be treated as an electric field Ez. [At a large distance

from an overall charge-neutral charge distribution like an atom, the longitudinal gradient of the scalar
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potential just cancels the longitudinal component of ∂~A/∂t, so what is left is ~E = −∂A⊥/∂t, which is
purely transverse.].

Ez = −
∂Az

∂t
. (23)

In the simplest case, the qAz term makes only a tiny perturbation to the momentum over a single
cycle of the ω0 oscillation, so its effects will only be appreciable over many cycles.

We consider an additional simplification, where the frequency of the applied field is exactly equal
to the transition frequency ω0 of the atom:

Az = A cos (ω0t) ⇒ −∂Az

∂t
= Ez = ω0 A sin (ω0t). (24)

In such evaluations, we need to be very careful to identify exactly which energy we are calculating:
The electric field is merely a bookkeeping device to keep track of the energy that an electron in one

atom exchanges with another electron in another atom, in such a way that the total energy is conserved.
We will evaluate how much energy a given electron gains from or loses to the field, recognizing that
the negative of that energy represents work done by the electron on the source electron responsible
for the field. The force on the electron is just qEz. Because Ez = ω0 A sin (ω0t), for a stationary charge,
the force is in the +z direction as much as it is in the −z direction, and, averaged over one cycle of the
electric field, the work averages to zero. However, if the charge itself oscillates with the electric field,
it will gain energy ∆E from the work done by the field on the electron over one cycle:

∆E
cycle

=
∫

qEz dz =
∫ 2π/ω0

0
qEz

∂ 〈z〉
∂t

dt, (25)

where 〈z〉 is the z position of the electron center of charge from Equation (20).
When the electron is “coasting downhill” with the electric field, it gains energy and ∆E is

positive. When the electron is moving “uphill” against the electric field, the electron loses energy and
∆E is negative.

As long as the energy gained or lost in each cycle is small compared with E0, we can define a
continuous power (rate of change of electron energy), which is understood to be an average over many
cycles. The time required for one cycle is 2π/ω0, so Equation (25) becomes:

∂E
∂t

=
ω0∆E

2π
=

ω0

2π

∫ 2π/ω0

0
qEz

∂ 〈z〉
∂t

dt =
1

2π

∫ 2π

0
qEz

∂ 〈z〉
∂t

d(ω0t). (26)

7. Electromagnetic Coupling

Because our use of electromagnetism is conceptually quite different from that in traditional
Maxwell treatments (including Jaynes’ NCT), we review here the foundations of that discipline
from the present perspective. [A more detailed discussion from the present viewpoint is given
in Mead, Collective Electrodynamics [16]. The standard treatment is given in Jackson, Classical
Electrodynamics, 3rd Edition, Chapter 8 [40].] It is shown in Ref. [16] that electromagnetism is of
totally quantum origin. We saw in Equation (22) that it is the vector potential ~A that appears as part of
the momentum of the wave function, signifying the coupling of one wave function to one or more
other wave functions. Thus, to stay in a totally quantum context, we must work with electromagnetic
relations based on the vector potential and related quantities. The entire content of electromagnetism
is contained in the relativistically-correct Riemann–Sommerfeld second-order differential equation:(

∇2 − ∂2

∂t2

)
A = −µ0 J, (27)
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where A = [~A, V/c] is the four-potential and J = [~J, cρ] is the four-current, ~A is the vector potential,
V is the scalar potential, ~J is the physical current density (no displacement current), and ρ is the
physical charge density, all expressed in the same inertial frame.

Connection with the usual electric and magnetic field quantities ~E and ~B is as follows:

~E = −∇V − ∂~A
∂t

~B = ∇× ~A. (28)

Thus, once we have the four-potential A, we can derive any electromagnetic relations we wish.
Equation (27) has a completely general Green’s Function solution for the four-potential A(t) at a

point in space, from four-current density J(r, t) in volume elements dvol at at distance r from that point:

A(t) =
µ0

4π

∫ J(r, t′)
r

∣∣∣∣t′=t± r
c

dvol, (29)

where r is the distance from element dvol to the point where A is evaluated, assumed large compared
to the size of the atomic wave functions, and c is the speed of light.

Equation (29) is the first fundamental equation of electromagnetic coupling: The vector potential,
which will appear as part of an electron’s momentum, is simply the sum of all current elements on that
electron’s light cone, each weighted inversely with its distance from that electron. The second-order
nature of derivatives in Equation (27) does not favor any particular sign of space or time. Thus,
the four-potential from a current element on the past light cone of the electron (t− r/c) will be “felt”
by the electron at later time t, and is termed a retarded field. Conversely, the four-potential from
a current element on the future light cone of the electron (t + r/c) will be “felt” by the electron at
earlier time t, and is termed an advanced field. Historically, with rare exception, advanced fields
have been discarded as non-physical because evidence for them has been explained in other ways.
We shall see that modern quantum experiments provide overwhelming evidence for their active role
in quantum entanglement.

Equation (29) can be expressed in terms of more familiar E&M quantities:

~A(t) =
µ0

4π

∫ ~J(r, t′)
r

∣∣∣∣∣
t′=t± r

c

dvol V(t) =
µ0c2

4π

∫
ρ(r, t′)

r

∣∣∣∣t′=t± r
c
dvol (30)

If the current density~J is due to the movement of a small, unified “cloud” of charge, as is the case
for the wave function of an atomic electron, and the motion of the wave function is non-relativistic,
the ~J integral just becomes the movement of the center of charge relative to its average position at
the nucleus:

~A(t) ≈ µ0

4π

∫
ρ~v(r, t′)

r

∣∣∣∣t′=t± r
c
dvol ≈ µ0

4π

q~v(r, t′)
r

∣∣∣∣t′=t± r
c

(31)

If, as we have chosen previously, the motion is in the z direction,

Az(t) ≈
qµ0

4πr
∂〈z(r, t′)〉

∂t′

∣∣∣∣t′=t± r
c

(32)

If we use the current element as our origin of time, the signs are reversed:

Az(t′)
∣∣t′=t∓ r

c ≈ qµ0

4πr
∂〈z(r, t)〉

∂t
(33)

In this case, t + r/c represents the retarded field and t− r/c represents the advanced field.
We shall use these two forms for the simple examples presented below.
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An important difference between standard Maxwell E&M practice and our use of the
four-potential to couple atomic wave functions is highlighted by Wheeler and Feynman [17]:

“There is no such concept as ’the’ field, an independent entity with degrees of freedom of its own.”

The field has no degrees of freedom of its own. It is simply a convenient bookkeeping device for
keeping track of the total effect of an arbitrary number of charges on a particular charge distribution in
some region of space. The general form of interaction energy E is given by:

E =
∫
(~A ·~J + ρV) dvol (34)

Equation (34) is the second fundamental equation of electromagnetic coupling. The interaction
described in Section 6 is a simplified case of this relation for a single atom. The energy minimum
created by the positive nucleus is the V, and the ρ is the charge distribution of the electron wave
function. The ~A from a second atom is very small, and is assumed to not change the eigenfunctions.

From Equations (34) and (29), we see that, when applied to two atoms, what is being described is
a way to factor a bi-directional connection between them so that each can be analyzed separately by
Schrödinger’s equation as a one-electron problem, using the vector potential from the other as part of
its energy.

The fact that the four-potential field from a charge is defined everywhere on its light cone does
not imply that it is “radiating into space”, carrying energy with it. Energy is only transferred at the
position of another charge. Since all charges are the finite charge densities of wave functions, there are
no self-energy infinities in this formulation.

One widely-held viewpoint treats the “quantum vacuum” as being made up of an infinite number
of quantum harmonic oscillators. The problem with this view is that each such oscillator would have a
zero-point energy that would contribute to the energy density of space in any gravitational treatment
of cosmology. Even when the energies of the oscillators are cut off at some high value, the contribution
of this “dark energy” is 120 orders of magnitude larger than that needed to agree with astrophysical
observations. Such a disagreement between theory and observation (called the “cosmological constant
problem”), even after numerous attempts to reduce it, is many orders of magnitude worse than any other
theory-vs-observation discrepancy in the history of science! However, somehow this viewpoint remains a
central part of the standard model of particle physics and standard practice in QM.

Our approach does not suffer from this serious defect, since its vacuum has no degrees of freedom
of its own. Where, then, is radiated energy going if an atom’s excitation decays and does not interact
locally? The obvious candidate is the enormous continuum of states of matter in the early universe,
source of the cosmic microwave background, to which atoms here and now are coupled by the
quantum handshake. For independent discussions from the two of us, see Ref. [16], p. 94 and Ref. [19].

8. Two Coupled Atoms

The central point of this paper is to understand the photon mechanism by which energy is
transferred from a single excited atom (atom α) to another single atom (atom β) initially in its
ground state.

We proceed with the simplest and most idealized case of two identical atoms, where:

(1) Excited atom α will start in a state where b ≈ 1 and a is very small, but never zero because
of its ever-present random statistical interactions with a vast number of other atoms in the
universe, and

(2) Likewise, atom β will start in a state where a ≈ 1 and b is very small, but never zero for the
same reason.
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Thus, each atom starts in a two-component state that has an oscillating electrical current described
by Equation (20):

q
∂ 〈zα〉

∂t
≈ −ω0d12aαbα sin(ω0t)

q
∂
〈
zβ

〉
∂t

≈ −ω0d12aβbβ sin(ω0t + φ),
(35)

where we have taken excited atom α as our reference for the phase of the oscillations (φα = 0),
and the approximation assumes that a and b are changing slowly on the scale of ω0.

Although that random starting point will contain small excitations of a wide range of phases,
we simplify the problem by assuming the following:

All of the vector potential Aβ at atom α is supplied by atom β,
All of the vector potential Aα at atom β is supplied by atom α,
The dipole moments of both atoms are in the z direction,
The atoms are separated by a distance r in a direction orthogonal to z,

The vector potential at distance r from a small charge distribution oscillating in the z-direction is
from Equation (32):

Az(t) =
qµ0

4πr
∂ 〈z(r, t′)〉

∂t′

∣∣∣∣t′=t± r
c

. (36)

Since all electron motions and fields are in the z direction, we can henceforth omit the z subscript.
When the distance r is small compared with the wavelength, i.e., r � 2πc/ω0, the delay r/c can

be neglected. Since atomic dimensions are of the order of 10−10 m and the wavelength is of the order
of 10−7 m, this case can be accommodated. We shall find that the results we arrive at here are directly
adaptable to the centrally important case in which the atoms are separated by an arbitrarily distance,
which will be analyzed in Section 9. Using Equation (23) and (32), the vector potentials, and hence the
electric fields, from the two atoms become:

Aα ≈
qµ0

4πr
∂ 〈zα〉

∂t
⇒ Eα = −∂Aα

∂t
≈ − qµ0

4πr
∂2 〈zα〉

∂t2

Aβ ≈
qµ0

4πr
∂
〈
zβ

〉
∂t

⇒ Eβ = −
∂Aβ

∂t
≈ − qµ0

4πr
∂2 〈zβ

〉
∂t2 .

(37)

When atom α is subject to electric field Eβ and atom β is subject to electric field Eα, the energy
of both atoms will change with time in such a way that the total energy is conserved. Thus,
the superposition amplitudes a and b of both atoms change with time, as described by Equation (17)
and (26), from which:

∂Eα

∂t
≈ 1

2π

∫ 2π

0
qEβ

∂ 〈zα〉
∂t

d(ω0t) = − q2µ0

8π2r

∫ 2π

0

∂2 〈zβ

〉
∂t2

∂ 〈zα〉
∂t

d(ω0t)

∂Eβ

∂t
≈ 1

2π

∫ 2π

0
qEα

∂
〈
zβ

〉
∂t

d(ω0t) = − q2µ0

8π2r

∫ 2π

0

∂2 〈zα〉
∂t2

∂
〈
zβ

〉
∂t

d(ω0t).

(38)

From Equation (38), using the 〈z〉 derivatives from Equation (20):

∂Eα

∂t
≈ − µ0

8π2r

∫ 2π

0

(
−ω2

0d12aβbβ cos(ω0t + φ)
) (
−ω0d12aαbα sin(ω0t) d(ω0t)

)
≈ −

µ0ω3
0d2

12aβbβaαbα

8π2r

∫ 2π

0
cos(ω0t + φ) sin(ω0t) d(ω0t) =

µ0ω3
0d2

12aβbβaαbα

8πr
sin(φ)

∂Eβ

∂t
≈ − µ0

8π2r

∫ 2π

0

(
−ω2

0d12aαbα cos(ω0t)
) (
−ω0d12aβbβ sin(ω0t + φ) d(ω0t)

)
≈ −

µ0ω3
0d2

12aαbαaβbβ

8π2r

∫ 2π

0
cos(ω0t) sin(ω0t + φ) d(ω0t) = −

µ0ω3
0d2

12aαbαaβbβ

8πr
sin(φ).

(39)
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These equations describe energy transfer between the two atoms in either direction, depending
on the sign of sin(φ). For transfer from atom α to atom β, ∂Eα/∂t is negative. Since this transaction
dominated all competing potential transfers, its amplitude will be maximum, so sin(φ) = −1.

If the starting state had been atom β in the excited (b ≈ 1) state, the sin(φ) = +1 choice would
have been appropriate:

Using : sin(φ) = −1 and Pαβ ≡
µ0ω3

0d2
12

8πr
, (40)

This rate of transferred energy is calculated for two isolated atoms suspended in space. We have
no experimental data whatsoever for such a situation. All optical experiments are done with some
optical system between the two atoms. Even the simplest such arrangement couples the two atoms
orders of magnitude better than the simple 1/r dependence in Equation (40) would indicate. We take up
the enhancement due to an intervening optical system in Section 10. Any such enhancement merely
provides a constant multiplier in Pαβ. In any case, Equation (39) becomes:

∂Eα

∂t
= E0

∂b2
α

∂t
= −Pαβ aβbβaαbα

∂Eβ

∂t
= E0

∂b2
β

∂t
= Pαβ aαbαaβbβ. (41)

Remembering that our total starting energy was E0 that b2 is the energy of the electron in units of
E0 referred to the ground state, that energy is conserved by the two atoms during the transfer, and that
the wave functions are normalized:

E0

(
b2

α + b2
β

)
= E0 ⇒ b2

α + b2
β = 1 ⇒ bβ =

√
1− b2

α

a2
α + b2

α = 1 ⇒ aα =
√

1− b2
α = bβ

a2
β + b2

β = 1 ⇒ aβ =
√

1− b2
β = bα,

(42)

after which substitutions Equation (41) becomes:

∂
(
b2

α

)
∂t

= b2
α

(
1− b2

α

)
/τ, where the transition time scale is τ ≡ E0

Pαβ
. (43)

This has the solution plotted in Figure 6:

b2
α = a2

β =
1

et/τ + 1
a2

α = b2
β =

1
e−t/τ + 1

. (44)

Note that this waveform is that of an individual interaction and has no probabilistic meaning.
It was the subject of many intense discussions about NCT in general, including a quite detailed one
in [30]. We refrain from such discussion here because the dependence of the dipole moment with
superposition makeup is not the only nonlinearity in the problem. The self-focusing nature of the
matched advanced/retarded electromagnetic solutions, described in Section 11, may be an even larger
nonlinearity in many cases. Although its time dependence is much more difficult to estimate, it will
almost certainly make the individual quantum transition much more abrupt.

The direction and magnitude of the entire energy-transfer process is governed by the relative
phase φ of the electric field and the electron motion in both atoms: When the electron motion of
either atom is in phase with the field, the field transfers energy to the electron, and the field is said
to excite the atom. When the the electron motion has opposite phase from the field, the electron transfers
energy “to the field”, and the process is called stimulated emission.
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Figure 6. Squared state amplitudes for atom α: b2
α (blue) and a2

α = b2
β (red) for the Photon transfer of

energy E0 = h̄ω0 from atom α to atom β, from Equation (44). Using the lower state energy as the zero
reference, E0b2 is the energy of the state. The green curve shows the normalized power radiated by
the atom α and absorbed by atom β, from Equation (43). The optical oscillations at ω0 are not shown,
as they are normally many orders of magnitude faster than the transition time scale τ. The time t
is in units of τ. In the next section, we will find that atoms spaced by an arbitrary distance exhibit
transactions of exactly the same form.

Therefore, for the photon transaction to proceed the field from atom α must have a phase such
that it “excites” atom β, while the field from atom β must have a phase such that it absorbs energy and
“de-excites” atom α. In the above example, that unique combination occurs when sin(φ) = −1.

This dependence on phase makes a transaction exquisitely sensitive to the frequency match
between atoms α and β. The frequency ω0 ≈ 1016/ s, so for transitions in the nanosecond range,
a mismatch of one part in 107 can cause a transaction to fail.

8.1. Competition between Recipient Atoms

As discussed at the end of Section 7, the bi-directional vector potential coupling has allowed us to
analyze the problem of two coupled atoms, which looks like a two-electron problem, as two coupled
one-electron problems, and therefore is treatable using Schrödinger’s wave mechanics. The approach
generalizes, so we can now examine the important three-atom case of a single excited atom α that is
equally coupled to two ground-state atoms β1 and β2. Recipient atoms β1 and β2 have the same level
spacing as source atom α. For atom β1, this corresponds to transition frequency ω0, and we assume
a relative phase of sin(φ) = −1. However, atom β2 is moving and has a slightly Doppler-shifted
transition frequency ω0 + ∆ω. We assume that β2 has the same structure and intial phase as β1 at time
t = 0. Thence, Equation (41), with the transition time scale τ ≡ E0/P0β1 = E0/P0β2, becomes:

τ
∂b2

β1

∂t
= aαbα

(
aβ1bβ1

)
τ

∂b2
β2

∂t
= aαbα

(
aβ2bβ2 cos(∆ωt)

)
τ

∂b2
α

∂t
= −aαbα

(
aβ1bβ1 + aβ2bβ2 cos(∆ωt)

) (45)

As with Equation (42), wave functions are normalized and energy is conserved:

a2
α + b2

α = 1 a2
β1 + b2

β1 = 1 a2
β2 + b2

β2 = 1 b2
α + b2

β1 + b2
β2 = 1. (46)

After these substitutions, we obtain two simultaneous differential equations in b2
β1 and b2

β2:

τ
∂b2

β1

∂t
=

√
b2

β1

(
1− b2

β1

) (
1− b2

β1 − b2
β2

) (
b2

β1 + b2
β2

)
τ

∂b2
β2

∂t
=

√
b2

β2

(
1− b2

β2

) (
1− b2

β1 − b2
β2

) (
b2

β1 + b2
β2

)
cos(∆ω t)

(47)
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The solutions of Equation (47) are shown in Figure 7 for two very small values of ∆ω:
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Figure 7. Squared excited state amplitudes for recipient atoms β1 and β2: b2
β1 (blue) and b2

β2 (red),
for the photon transfer of energy E0 = h̄ω0 from atom α. The time t is in units of τ. The left plot,
for ∆ω = 0.3/τ, shows both recipient atoms being equally excited at the beginning, but the slip in
phase of the red β2 atom causes it to rapidly lose out, so the blue β1 atom hogs all the energy and
proceeds to become fully excited, much as if it were the “only atom in town”. Its curve is nearly
identical with that for the isolated recipient atom in Figure 6. The right plot, for ∆ω = 0.15/τ,
shows a totally different story. Its red β2 atom transition frequency is just close enough to that of
source atom 0 that it “hangs in there” during the transition period and ends up partially excited,
leaving blue β1 atom partially excited as well. The smaller the “slip” frequency ∆ω, the closer are the
post-transition excitations of the two recipient atoms. “Split-photons” of this kind are observed in the
Hanbury–Brown–Twiss Effect described in Section 13. As noted above, the frequency window for such
events is extraordinarily narrow, typically of order 10−7ω0. Doppler shift of this magnitude requires
velocity ≈ 30 m/s. Room temperature thermal velocities of gasses are typically tens to hundreds of
times this value, which would eliminate such competition. Thus, complete transactions are the most
common, with “split” transactions relatively rare and are likely to end as HBT-type four-atom events.

Here, again the transaction time scale τ is not to be confused with the time scale for initiating a
transaction after atom α is excited, which is a question of probability. We make no pretense here of
deriving probability results for a random population of atoms, but, from these results, we can imagine
what one might look like: The random starting point for the transaction involving one excited atom will
contain small excitations of a wide range of phases. Equation (43) is a highly nonlinear equation—the
amplitude of each of those excitations will initially grow exponentially at a rate proportional to its
own phase match. Thus, the excitation of a random recipient atom that happens to have sin(φ) ≈ −1
will win in the race and become the dominant partner in the coordinated oscillation of both atoms.
Thus, we have conceptualized the source of the intrinsic randomness within quantum mechanics, an aspect of
statistical QM that has been considered mysterious since its inception in the 1920s.

Each wave function will thus evolve its motion to follow the applied field to its maximum resonant
coupling and we can take sin(φ) = −1 in these expressions, which we have done in Equation (41),
Figure 6 and Equation (45). [What we have not done is to derive the full second-order nature of phase
locking in this arrangement. That analysis is rendered much more difficult by the potentially huge
amplification due to the self-focusing nature of the bi-directional electromagnetic coupling described
in Section 10. Thus, a full derivation remains open to future generations.]

From the TI point of view, all three atoms start in stable states, with each having extremely small
admixtures of the other state, so that they have very small dipole moments oscillating with angular
frequency ω0 ≈ (E2 − E1)/h̄. We assume that in source atom α this admixture creates an initial
positive-energy offer wave that interacts with the small dipole moments of absorber atoms β1 and β2
to transfer positive energy, and that in atoms β1 and β2 this admixture creates initial negative-energy
confirmation waves to the excited emitter atom α that interact with the small dipole moment of emitter
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atom α to transfer negative energy, as shown schematically in Figure 1. As a result of the mixed-energy
superposition of states as shown in Figure 5, all three atoms oscillate with very nearly the same
frequency ω0 and act as coupled dipole resonators.

Energy transferred from source atom α to both recipient atoms β1 and β2 causes an increase
in both minority states of the superposition, thus increasing the dipole moment of all three states,
thereby increasing the coupling and, hence, the initial rate of energy transfer. This behavior is
self-reinforcing for any atom that can stay in phase, giving the transition its initial exponential character.
In the usual case, only one atom is sufficiently well frequency matched to stay in phase for the entire
duration of the transition, the unfortunate runner-up is rudely driven out of the competition, and the
winner drives the transaction to its conclusion, as shown in the left panel of Figure 7.

In the presence of near-equal competition, one competitor either loses out to a competing
transaction, or, in case of a tie, results in a “split-photon”, as shown in the right panel of Figure 7.
That situation represents an intermediate state with actively oscillating dipole moments, as discussed
above, in which the two confirmation waves, in the phase at the source, can precipitate the de-excitation
of an additional excited atom to create a final HBT four-atom event.

The universe is full of similar atoms, all with slightly different transition frequencies due to
random velocities. There are also random perturbation by waves from other systems that can randomly
drive the exponential instability in either direction. This random environment is the source of the
intrinsic randomness in quantum processes. Ruth Kastner [41] attributes intrinsic randomness to
“spontaneous symmetry breaking”, which could split a “tie” in the absence of environmental factors.

We note here that the probability of the transition must depend on two things: the strength of the
electromagnetic coupling between the two states, and the degree to which the wave functions of the
initial states are superposed. The magnitude of the latter must depend on the environment, in which
many other atoms are “chattering” and inducing state-mixing perturbations. The more potential
partner atoms there are per unit energy, the greater the probability of a perfect match. Thus, we see
the emergence of Fermi’s “Golden Rule” [42], the assertion that a transition probability in a coupled
quantum system depends on the strength of the coupling and the density of states present to which
the transition can proceed. The emergence of Fermi’s Golden Rule is an unexpected gift delivered to
us by the logic of the present formalism.

It is certainly not obvious a priori that the Schrödinger recipe for the vector potential in the
momentum (Equation (22)), together with the radiation law from a charge in motion (Equation (33)),
would conspire to enable the composition of the superposed states of two electromagnetically coupled
wave functions to reinforce in such a way that, from the asymmetrical starting state, the energy of one
excited atom could explosively and completely transfer to the unexcited atom, as shown in Figure 6 and
Figure 7.

If nature had worked a slightly different way, an interaction between those atoms might have
resulted in a different phase, and no full transaction would have been possible. The fact that
transfer of energy between two atoms has this nonlinear, self-reinforcing character makes possible
arrangements like a laser, where many atoms in various states of excitation participate in a glorious
dance, all participating at exactly the same frequency and locked in phase.

Why do the signs come out that way? No one has the slightest idea, but the behavior is so remarkable
that it has been given a name: Photons are classified as bosons, meaning that they behave that way!

That remarkable behavior is not due to any “particle-like” quantization of the electromagnetic
field. Quantization of the photon energy is a result of the discrete nature of electron states in atoms.

The movement of an electron in a superposed state couples to another such electron
electromagnetically. It is essential that this electromagnetic coupling is bi-directional in space-time
to conserve energy in the transaction. The statistical QM formulation needed some mechanism to
finalize a transaction and did not recognize the inherent nonlinear positive-feedback that nature built
into a pair of coupled wave functions. Therefore, the founders had to put in wave-function collapse
“by hand”, and it has mystified the field ever since. The NCT formulations did understand the inherent
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nonlinear positive-feedback that nature built into a pair of coupled wave functions, but postulated
a unidirectional “Maxwell” treatment of the electromagnetic field that did not conserve energy, as we
now discuss.

9. Two Atoms at a Distance

We saw that for two atoms to exchange energy, the vector potential A field at atom β must come
from atom α, the A field at atom α must come from atom β, and the oscillations must stay in coherent
phase, with a particular phase relation during the entire transition. This phase relation must be maintained
even when the two atoms are an arbitrary distance apart. This is the problem we now address.

To be definite, we consider the case where the two atoms are separated along the x-axis, atom α at
x = 0 in the excited state and atom β at x = r in its ground state, so their separation r is orthogonal to
the z-directed current in the atoms. The “light travel time” from atom α to atom β is thus ∆t = r/c.
What is observed is that the energy radiated by atom α at time t is absorbed by atom β at time
t′ = t + ∆t:

∂Eβ(r, t′)
∂t′

∣∣∣∣∣
t′=t+∆t

= −∂Eα(0, t)
∂t

(48)

This behavior is familiar from the behavior of a “particle”, which carries its own degrees of
freedom with it: It leaves x = 0 at time t and arrives at x = r at time t′ = t + ∆t after traveling at
velocity c. Thus, Lewis’s “photon” became widely accepted as just another particle, with degrees of
freedom of its own. We shall see that this assumption violates a wide range of experimental findings.

For atom β, Equation (38) becomes:

∂Eβ(r, t′)
∂t′

=
1

2π

∫ 2π

0
−qEα(r, t′)

∂
〈
zβ(r, t′)

〉
∂t′

d(t′) where t′ = t + ∆t (49)

The retarded field from atom α interacts with the motion of the electron in atom β. The only
difference from our zero-delay solution is that the energy transfer has its time origin shifted by
∆t = r/c.

This result has required that we choose a positive sign for the ∓r/c in Equation (33). By doing
that, we are building in an “arrow of time”, a preferred time direction, in the otherwise even-handed
formulation. In particular, we are assuming that the retarded solution transfers positive energy. So far,
everything is familiar and consistent with commonly held Maxwell notions: A retarded solution
carrying energy with it. However, we saw that the source atom required a matched vector potential to
lose energy.

The standard picture leaves no way for atom α to lose energy to atom β. It does not conserve energy!
When energy is transferred between two atoms spaced apart on the x-axis, the field amplitude

must be “coordinate and symmetrical” as Lewis described. The field Eα(x = r) at the second atom due to
the current in the first must be exactly equal in magnitude to the the field Eβ(x = 0) at the first atom
due to the current in the second, but separated in time by ∆t: For atom α, Equation (38) becomes

∂Eα(0, t)
∂t

=
∫ 2π

0
−qEβ(0, t)

∂ 〈zα〉
∂t

dt (50)

Thus, the field Eβ from atom β, which arises from the motion of its electron at time t′ = t + ∆t,
must arrive at atom α at time t, earlier than its motion by ∆t. The only field that fulfills this condition is
the advanced field from atom β, signified by choosing a negative sign for the ∓r/c in Equation (33).
That choice uniquely satisfies the requirement for conservation of energy. It also builds complementary
“arrows of time” into the formulation—we assume that the advanced solution transfers negative energy
to the past and the retarded solution transfers positive energy to the future. These two assumptions
create a new non-local “handshake” symmetry that is not expressed in conventional Maxwell E&M.
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Once these choices for the ∓r/c in Equation (33) are made, the resulting equations for each of
the energy derivatives in Equation (39) are unchanged when t′ = t + ∆t is substituted for t in the
expression for ∂Eβ/∂t. Thus, each transition proceeds in the local time frame of its atom—for all the
world (except for amplitude) as if the other atom were local to it. This “locality on the light cone” is
the meaning of Lewis’ comment:

“In a pure geometry it would surprise us to find that a true theorem becomes false when the page
upon which the figure is drawn is turned upside down. A dissymmetry alien to the pure geometry of
relativity has been introduced by our notion of causality.”

The dissymmetry that concerned Lewis has been eliminated.
This conclusion is completely consistent with the 1909 formulation of Einstein [43],

who was critical of the common practice of simply ignoring the advanced solutions for
electromagnetic propagation:

“I regard the equations containing retarded functions, in contrast to Mr. Ritz, as merely auxiliary
mathematical forms. The reason I see myself compelled to take this view is first of all that those forms
do not subsume the energy principle, while I believe that we should adhere to the strict validity of the
energy principle until we have found important reasons for renouncing this guiding star.”

After defining the retarded solution as f1, and the advanced solution as f2, he elaborates:

“Setting f (x, y, z, t) = f1 amounts to calculating the electromagnetic effect at the point x, y, z
from those motions and configurations of the electric quantities that took place prior to the time
point t.’́ "Setting f (x, y, z, t) = f2, one determines the electromagnetic effects from the motions and
configurations that take place after the time point t.”

“In the first case the electric field is calculated from the totality of the processes producing it,
and in the second case from the totality of the processes absorbing it...
Both kinds of representation can always be used, regardless of how distant the absorbing bodies are
imagined to be.”

The choice of advanced or retarded solution cannot be made a priori: It depends upon the boundary
conditions of the particular problem at hand. The quantum exchange of energy between two atoms
just happens to require one advanced solution carrying negative energy and one retarded solution
carrying positive energy to satisfy its boundary conditions at the two atoms, which then guarantees
the conservation of energy.

Thus, the even-handed time symmetry of Wheeler–Feynman electrodynamics [17,18] and of the
Transactional Interpretation of quantum mechanics [12], as most simply personified in the two-atom
photon transaction considered here, arises from the symmetry of the electromagnetic propagation
equations, with boundary conditions imposed by the solution of the Schrödinger equation for the
electron in each of the two atoms, as foreseen by Schrödinger. We see that the missing ingredients in
previous failed attempts, by Schrödinger and others, to derive wave function collapse from the wave
mechanics formalism were that advanced waves were not explicitly used as a part of the process.

To keep in touch with experimental reality, we return to our two H atoms spaced a distance r
apart. We can estimate the "transition time” τ from Equations (41) and (40):

∂Eβ

∂t
= Pαβ aαbαaβbβ =

µ0ω3
0d2

12
8πr

aαbαaβbβ. (51)

From the green curve in Figure 5, we can estimate the dipole strength, which is q times the
“length” between the positive and negative “charge lumps”, say d12 ≈ 3qa0. At the steepest part of the
transition, all the a and b terms will be 1/

√
2, so

∂Eβ

∂t

∣∣∣∣
max
≈

µ0ω3
0(3qa0)

2

32πr
. (52)
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From any treatment of the hydrogen spectrum, we obtain, for the 210→100 transition:

E0 = h̄ω0 =
9q2

128πε0a0
(53)

so the transition time will be:

τ12 ≈
E0

∂Eβ

∂t

∣∣∣
max

≈ r
4 a3

0ω3
0ε0µ0

=
r c2

4 a3
0ω3

0
≈ r× 0.04

sec
m

, (54)

Thus, if the assumption of the 1/r dependence of the vector potential (r dependence of the
transition time) were the whole picture, it would take 1/25 of a second for a transaction to complete
if the atoms were suspended one meter apart. Such a long transition time would allow the excited
atom’s energy to be frittered away by the many possible competitive paths, thus making any modern
optical experiment virtually impossible, so no experiments are done that way! In real experiments,
atoms are coupled by some optical system, composed of lenses, mirrors, and the like. That optical
system will have some solid angle containing paths from one atom to the other. The effect of the
optical system is to replace the 1/r dependence with Solid Angle/λ, as described in Section 10. Thus,
the 0.04 s transition given by Equation (54) for two isolated atoms 1 m apart becomes 2× 10−9 s when
a 1 steradian optical system is used.

Once again, we caution that the time estimated here is the time course of the single transaction after
a handshake is formed, which must not be confused with the probabilistic time for a transaction to be
initiated after excitation of the source atom.

10. Paths of Interaction

We have developed a simple conceptual understanding of how a single quantum h̄ω0 of energy is
transferred from one isolated atom to another by way of a “photon” transaction. Real experiments
with such transactions measure the statistics of many such events as functions of intensity, polarization,
time delay, and other variables. Much has been discovered in the process, some results quite surprising,
as described for the Freeman–Clauser experiment in Section 13. Thus, the time has come for us
to discuss, at a conceptual level, where the probabilities come from. In the wonderful little book
QED [44], our Caltech colleague the late Richard Feynman gives a synopsis of the method by which
light propagating along multiple paths initiates a transaction, which he calls an event:

“Grand Principle: The probability of an event is equal to the square of the length of an arrow called
the ’probability amplitude.’...”

“General Rule for drawing arrows if an event can happen in alternative ways: Draw an arrow for each
way, and then combine the arrows (’add’ them) by hooking the head of one to the tail of the next.”

“A ’final arrow’ is then drawn from the tail of the first arrow to the head of the last one.”

“The final arrow is the one whose square gives the probability of the entire event."

Feynman’s “arrow” is familiar to every electrical engineer as a phasor, introduced in 1894 by
Steinmetz [45,46] as an easy way to visualize and quantify phase relations in alternating-current
systems. In physics, the technique is known as the sum over histories and led to Feynman path
integrals. His “probability amplitude” is the amplitude of our vector potential, whose square is the
probability of a photon.

Feynman then illustrates his Grand Principle with simple examples how a source of light S at
one point in space and time influences a receptor of that light P at another point in space and time,
as shown in Figure 8. It is somewhat unnerving to many people to learn from these examples that the
resultant intensity is dependent on every possible path from S to P. We strongly recommend that little
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book to everyone. That discussion, as well as what follows, details the behavior of highly coherent
electromagnetic radiation with a well-defined, highly stable frequency ω and wavelength λ.

Figure 8. All the paths from coherent light source S to detector P are involved in the transfer of energy.
The solid curve on the “TIME” plot shows the propagation time, and hence the accumulated phase, of
the corresponding path. Each small arrow on the “TIME” plot is a phasor that shows the magnitude
(length) and phase (angle) of the contribution of that path to the resultant total vector potential at P.
The “sea horse” on the far right shows how these contributions are added to form the total amplitude
and phase of the resultant potential. (From Fig. 35 in Feynman’s QED).

Of course, we have all been taught that light travels in straight lines which spread out as they
radiate from the source, and so the resultant intensity decreases as 1/r2, where r is the distance
from the source S. However, if the light intensity at P depends on all of the paths, how can this 1/r2

dependence come about? Well, let’s follow Feynman’s QED logic: [If the reader does not have a
copy of QED handy, there is a condensed version in Chapter I-26 of the Feynman Lectures on Physics at
https://www.feynmanlectures.caltech.edu/I_26.html].

We can see from the “seahorse” phasor diagram at the right of Figure 8 that the vast majority of
the length of the resultant arrow is contributed by paths very close to the straight line S-M-P. Thus,
let’s make a rough estimate of how many paths there are near enough to “count.” We can see from the
diagram that, once the little arrows are plus or minus 90◦ from the phase of the straight line, additional
paths just cause the resultant to wind around in a tighter and tighter circle, making no net progress.
Thus, the uppermost and lowermost paths that “count” are about a quarter wavelength longer than the
straight line. Let’s use r for the straight-line distance S-P, λ for the wavelength, and y for the vertical
distance where the path intersects the midline above M. Then, Pythagoras tells us that the length l/2
of either segment of the path is

l
2
=

√( r
2

)2
+ y2 (55)

Therefore, the entire path length l is

l =
√

r2 + 4y2 = r

√
1 + 4

y2

r2
(56)

We are particularly interested in atoms at a large distance from each other, and will guess that this
means that y is very small compared to r, so all the paths involved are very close to the straight line.
We can check that assumption later. Since y2/r2 � 1, we can expand the square root:

l ≈ r
(

1 + 2
y2

r2

)
= r + 2

(
y2

r

)
(57)

https://www.feynmanlectures.caltech.edu/I_26.html
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Thus, the outermost path that contributes is 2y2/r longer than the straight line path. We already
decided that maximum extra length of a contributing path would be about a quarter wavelength:

2
(

y2

r

)
≈ λ

4
⇒

(y
r

)2
≈ λ

8r
(58)

We can now check our assumption that y2/r2 � 1. If r = 1 m and our 210→ 100 transition has
λ ≈ 10−7 m, then y2/r2 ≈ 10−8, so our assumption is already very good, and gets better rapidly as r
gets larger.

How do we estimate the number of paths from S to P? Well, no matter how we choose the
path spacing radiating out equally in all directions from S, the number of paths that “count” will be
proportional to the solid angle subtended by the outermost such paths. Paths outside that “bundle”
will have phases that cancel out as Feynman describes. The angle of the uppermost path is y/r.
Paths also radiate out perpendicular to the page to the same extent, so the total number that “count”
goes as the solid angle = π(y/r)2. Feynman tells us that the resultant amplitude A is proportional to
the total number of paths that “count,” so we conclude from Equation (58):

A ∝ Solid Angle = π
(y

r

)2
≈ πλ

8 r
(59)

Thus, this is the fundamental origin of the 1/r law for amplitudes.
The intensity is proportional to the square of the amplitude, and therefore goes like 1/r2, as we all

learned in school. Thus, instead of lines of energy radiating out into space in all directions, Feynman’s
view of the world encourages us to visualize the source of electromagnetic waves as “connected” to
each potential receiver by all the paths that arrive at that receiver in phase. Just to convince us that all
this “path” stuff is real, Feynman gives numerous fascinating examples where the 1/r2 law doesn’t
work at all. Our favorite is shown in Figure 9:

Figure 9. Situation identical to Figure 8 but with a piece of glass added. The shape of the glass is such
that all paths from the source S reach P in phase. The result is an enormous increase in the amplitude
reaching P. (From Fig. 36 in Feynman’s QED).

The piece of glass does not alter the amplitude of any individual path very much—it might lose
a few percent due to reflection at the surfaces. However, it slows down the speed of propagation of
the light. In addition, the thickness of the glass has been tailored to slow the shorter paths more than
the longer paths, so all paths take exactly the same time. The net result is that the oscillating potential
propagating along every path reaches P in phase with all the others! Now, we are adding up all the little
phasor arrows and they all point in the same direction! The amplitude is enhanced by this little chunk of
glass by the factor:

EnhancementFactor =
Lens Solid Angle

Solid Angle from Equation (59)
≈ 8 r

πλ
Lens Solid Angle (60)
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For the arrangement shown in Figure 9, at the size it is printed on a normal-sized page, r ≈ 5 cm,
so from From Equation (59), the solid angle of the “bundle” of paths without the glass was of the order
of 10−7. The solid angle enclosing the paths through the glass lens is ≈1 steradian (sr), so the little
piece of glass has increased the potential at P by seven orders of magnitude, and the intensity of the light
by fourteen orders of magnitude! In this and the more general case, we get an important principle:

Insertion of an optical system replaces the
1
r

factor by
8

πλ
×Lens Solid Angle (61)

Returning to our two H atoms spaced 1 m apart, we found in Equation (54) that, using the
standard 1/r potential, the “transition time” for the quantum transaction was ≈0.04 s. For the ω0

wavelength the Rate Enhancement Factor with a 1st optical system is ≈2× 107, thereby shortening the
transition time τ by a factor of ≈5× 10−8, making τ ≈ 2 ns.

We have learned an important lesson from Feynman’s characterization of propagation phenomena:
Changing the configuration of components of the arrangement in what appear to be innocent ways
can make drastic differences to the resultant potential at certain locations. The reader will find many
other eye-opening examples in QED and FLP I-26. We will find in Section 11 that two atoms in a
“quantum handshake” form a pattern of paths that greatly increases the potential by which the atoms
are coupled, and hence can shorten the transition beyond what is possible with just the optical system.

All the results in statistical QM are probabilities because Heisenberg denied that there was any
physics in the transactions. That denial has left the field in a conceptual mess. There is no doubt that
statistical QM makes it easy to calculate probabilities of a wide variety of experimental outcomes,
and that these predicted outcomes overwhelmingly agree with reality. However that discipline is,
by design, powerless to provide reasoning for how those outcomes come about. The object of this paper
is to understand the individual transaction, not to calculate probabilities. Thus, the times quoted above are
the times required for the individual event, once initiated, not the time constant of some statistical
distribution. We deal with a realm of which statistical QM denies the existence.

11. Global Field Configuration

We are now in a position to visualize the field configuration for the quantum exchange of energy
between two atoms, as analyzed in Section 9, using the locations and coordinated defined there.
From Equations (37) and (35), and using sin(φ) = −1, the total field is composed of the sum of the
retarded solution Aα, at distance rα from atom α and the advanced solution Aβ, at distance rα from
atom β:

Aα ∝
1
rα

∂ 〈zα〉
∂t

= − 1
rα

sin
(
ω0(t− rα/c)

)
Aβ ∝

1
rβ

∂
〈
zβ

〉
∂t

∝
1
rβ

cos
(
ω0(t + ∆t + rβ/c)

) (62)

Including both x and y coordinates in the distances rα and rβ from the two atoms, the vector
potentials from the two atoms anywhere in the x− y plane are

Aα(x, y, t) ∝ − 1/τ√
x2 + y2

sin

(
ω0

(
t−

√
x2 + y2)

c

))

Aβ(x, y, t) ∝
1/τ√

(x− ∆x)2 + y2
cos

(
ω0

(
(t + ∆t) +

√
(x− ∆x)2 + y2)

c

)) (63)

An example of the total vector potential Atot = Aα + Aβ along the x-axis is shown in Figure 10.
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Figure 10. Normalized vector potential along the x-axis (in wavelength/2π) between two atoms in the
“quantum handshake” of Equation (63). The wave propagates smoothly from atom α (left) to atom β

(right). Animation here [37]. (see Supplementary Materials).

A “snapshot” of the potential of Equation (63) at one particular time for the full x− y plane is
shown in Figure 11.

Figure 11. Two atoms in the “quantum handshake” of Equation (63). Animation here [37]. (see
Supplementary Materials).

The still image in this figure looks like a typical interference pattern from two sources—a “standing
wave.” There are high-amplitude regions of constructive interference which appear light blue and
yellow on this plot. These are separated from each other by low-amplitude regions of destructive
interference, which appear green. In a standing wave, these maxima would oscillate at the transition
frequency, with no net motion. The animation, however, shows a totally different story: Instead of
oscillating in place as they would in a standing wave, the maxima of the pattern are moving steadily from
the source atom (left) to the receiving atom (right). This movement is true, not only of the maxima between
the two atoms, but of maxima well above and below the line between the two atoms. These maxima
can be thought of as Feynman’s paths, each carrying energy along its trajectory from atom α to atom β.
For those readers that do not have access to the animations, the same story is illustrated by a stream-plot
of the Poynting vector in the x-y plane, shown in Figure 12:
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Figure 12. Poynting vector stream lines of the “quantum handshake” of Equation (63).

We can get a more precise idea of the phase relations by looking at the zero crossings of the
potential at one particular time, as shown in Figure 13. Paths from atom 1 to atom 2 can be traced
through either the high-amplitude regions or the low-amplitude regions. The paths shown in Figure 13
are traced through high-amplitude regions.

Figure 13. The zero crossings of the handshake vector potential at t = 0. Paths near the axis (between
the two red lines) are responsible for the conventional 1/r dependence of the potential. Paths shown
through high-amplitude regions have an even number of zero crossings, and thus the potentials
traversing these paths all arrive in phase, thus adding to the central potential.

The central set of paths, delimited by the red lines, are responsible for the conventional 1/r
dependence of the potential, as described with respect to Equation (59). Working outward from there,
each high-amplitude path region is separated from the next by a slim low-amplitude region. It is
a remarkable property of this interference pattern that each low-amplitude path has π more phase
accumulation along it than the prior high-amplitude path and π less than the next high-amplitude path.
The low-amplitude paths are the ones that contribute to the “de-phasing” in this arrangement, but they
are very slim and of low amplitude, so they don’t de-phase the total signal appreciably. In addition,
the phases of the paths through the high-amplitude regions are separated by 2πn, where n is an integer.
All waves propagating from atom α to atom β along high-amplitude paths arrive in phase!

In Feynman’s example shown in Figure 8, there are an equal number of paths of any phase,
so every one has an opposite to cancel it out. In Figure 9, the lens makes all paths have equal time delay,
which then enables them to all arrive with the same phase.

The phase coherence of the advanced-retarded handshake creates a pattern of potentials that has a
unique property: It is not like either of Feynman’s examples in Figure 8 or Figure 9. Its high-amplitude
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paths do arrive in phase, but by a completely different mechanism. It all starts with the bundle of paths
between the red lines, which has the 1/r amplitude, just as if there were no quantum mechanism.
Then, as the handshake begins to form, additional paths are drawn into the process. The process is
self-reinforcing on two levels—the increase in dipole moment and the increase in number of paths
that arrive in phase. Paths that formerly would have cancelled the in-phase ones are “squeezed” into
extremely narrow regions, all of low amplitude, as can be seen in Figure 13. Thus, a large fraction of
the solid angle around the atoms is available for the in-phase high-amplitude paths.

For optical systems with large solid angle, the self-focusing enhancement may still be noticeable
in the shape of the transition waveform, but for one-sided systems, like an astronomical telescope,
we expect it to be be dominant.

Following Feynman’s program has led us to conclude that: The vector potential from all paths
sum to make a highly-amplified connection between distant atoms. The advanced-retarded potentials
form nature’s very own phase-locked loop, which forms nature’s own Giant Lens in the Sky!

The consequences of this fact are staggering: Once an initial handshake interference pattern
is formed between two atoms that have their wave functions synchronized, the strength grows
explosively: Not only because the dipole moment of each atom grows exponentially, but, in addition,
a substantial fraction of the possible interaction paths between the two atoms propagate through
high-amplitude regions, independent of the distance between them! Although we have not worked out the
difficult second-order dynamics of phase-locking between coupled atoms, we believe that here is the
solution to the long-standing mystery of the “collapse of the wave function” of the “photon”.

The interaction depends critically on the advanced-retarded potential handshake to keep all
paths in phase. Ordinary propagation over very long paths becomes “de-phased" due to the slightest
variations of the propagation properties of the medium. By contrast, the advanced and retarted
fields are precise negative images of each other on exactly the same light cone, so the phase of
high-amplitude handshake paths are always related by an even number of π to the phase of other
such paths. Paths having odd numbers of π phase are always of low amplitude, and do not cancel
the even-π phase paths as they would in a one-way propagating wave like Feynman used in his
illustrations. [A detailed analysis of these properties has not been done. It is a wonderful project for
the future.]

The interaction proceeds in the local time frame of each atom because they are linked with
the advanced-retarded potential. The waves carrying positive energy from emitter to absorber
are retarded waves with positive transit time; they reach the absorber after a single transit time
∆t = r/c. Once they have established a phase-coherent “handshake” connection, Lewis’ “coordinate
and symmetrical” advanced waves with negative transit time are launched toward the emitter, arriving
at the precise time and in the precise phase to withdraw energy from the emitter. During the
transaction, as long as the “handshake” connection is active, any change in the state of one atom
will be directly reflected in the state of the other. Aside from the time-of-flight propagation time to
establish the “handshake”, there is no additional “round trip” time delay in the quantum-jump process,
which proceeds as if the two atoms were local to each other.

Thus, the Transactional Interpretation allows us to conceptualize Niels Bohr’s “instantaneous”
quantum jump [47] concept that Schrödinger, who expected time-extended classical transitions, found
impossible to accept [48].

12. Relevance to the Transactional Interpretation

The calculation that we have presented here, with its even-handed treatment of advanced
and retarded four-potentials, was inspired by WFE and the Transactional Interpretation, but it also
provides interesting insights that clarify and modify the mechanism by which a transaction forms.
Wheeler–Feynman electrodynamics suggests that a retarded wave, arriving at a potential absorber,
stimulates that entity to generate a canceling retarded wave accompanied by an advanced wave. The TI
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suggests that this advanced wave arrives back at the emitter with amplitude ψψ∗, a relation suggesting
the Born rule.

However, from our calculation, we see that a slightly different process is described. Both emitter
and absorber initially have small admixtures of the opposite eigenstate, giving them dipole
moments that oscillate with the same difference-frequency ω0. The two oscillations each have an
environment-induced random phase. If the phases have the correct relation [sin(φ) ≈ −1], the dipole
moments of both atoms initially increase exponentially, the system becomes a phase-locked loop,
and it avalanches to a final state of multi-path energy transfer that satisfies all boundary conditions.
In that scenario, the initial confirmation wave is likely to have an amplitude much weaker than WFE
would suggest, and the quantity ψψ∗ becomes that used by Schrödinger to provide the electron
density function.

How can a linear system generate such nonlinear behavior? While the Schrödinger equation
is indeed linear, Equation (43) governing the evolution of transaction formation and wave function
collapse is highly nonlinear. Thus, the TI’s assertion that the offer wave “stimulates the generation
of the confirmation wave” must be modified. Rather, advanced and retarded potentials, boundary
conditions at both ends, and a fortuitous matching of phase trigger the nonlinear avalanche in both
atoms and brings about the transaction.

We also note that the advanced and retarded waves do not carry “information” in the usual
sense in either time direction, but only deliver a pair of oscillating four-potentials to the sites of a
pair of oscillating charges, leading dynamically to an initially exponential rise in coupling, a focusing
of alternative paths, the formation of a transaction, a transfer of energy, and the enforcement of
conservation laws. For the Transactional Interpretation, this phase selection process clarifies the
randomizing mechanism by which, in the first stage of transaction formation, the emitter makes a
random choice between competing offer waves arriving from many potential absorbers. The offer
wave with the best phase is likely to win, even if it comes from far away. [It is sometimes asserted that
this handshake situation is only possible in a frozen deterministic four-dimensional “block universe”
because of the two-way connections between present and future. We reject this assertion, which is
dissected in some detail in Section 9.2 of Ref. [12]. While it is true that the assumption of a block
universe would dispel or bypass many of the quantum paradoxes, it would only do so at the terrible
price of imposing complete determinism on the universe.].

We saw in the derivation of the coupling of two separated atoms that it was necessary to use
the advanced 4-potential in order to satisfy the law of conservation of energy. This, not “information
transfer”, is the role of the quantum handshake in the Transactional Interpretation. The quantum
handshakes act to enforce conservation laws and do not form unless all conserved quantities are
properly transferred and conserved. This is what is going on in quantum entanglement: the separated
parts of a quantum system are linked by conservation laws that are enforced by V-shaped three-vertex
advanced-retarded quantum handshakes [12] and cannot emerge as a completed transaction unless
those conservation laws are satisfied. In this context, we note that the Transactional Interpretation,
using such linked advanced-retarded handshakes, is able to explain in detail the behavior of over 26
otherwise paradoxical and mysterious quantum optics experiments and gedankenexperiments from the
literature. See Chapter 6 of Ref. [12]. If we cannot dismiss the plethora of competing QM interpretations
based on their failure in experimental tests, we should eliminate them when they fail to explain paradoxical
quantum optics experiments (as almost all of them do.)

13. Historic Tests

13.1. The Hanbury–Brown–Twiss Effect and Waves vs. Particles

It is often said that particles in quantum mechanics “travel as waves but arrive as particles”.
The Hanbury–Brown–Twiss effect [49] (HBT) is an example of this principle. It demonstrates that, in the
second-order interference of incoherent wave sources, photons are divisible and are not electromagnetic
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“billiard balls” that maintain individual identities. The HBT technique was first applied to the
measurement of the diameters of nearby stars, e.g., Betelguese, using intensity interferometry with
radio waves. The original experiments involved large parabolic radio dishes mounted on rail cars.

A simplified version of an HBT interference measurement is illustrated in Figure 14. Sources 1 and
2 are separated by a distance d12. Both sources emit waves of the same wavelength λ = 2πc/ω, but are
not causally connected. Radiation from the two sources is received by detectors A and B, which are
separated by a distance dAB. The line between the sources is parallel to the line between the detectors,
and the two lines are separated by a distance L. Hanbury-Brown and Twiss showed that a significant
rate of coincident detections—up to a factor of 2 larger than could be ascribed to chance—was observed
in this arrangement. For this simple configuration, the probability of a coincident detection in the
two detectors, for small dAB and very large L, is proportional to 1 + cos[2π dAB d12/(λL)], which is
maximum when dAB = 0 and falls off as the detector separation increases, the rate of falloff indicating
the value of d12.

Figure 14. Schematic diagram of the Hanbury–Brown–Twiss effect, with excited atoms 1 and 2 in distant
separated sources simultaneously exciting ground state atoms A and B in two separated detectors.

The very fact that coincidences are observed in this experiment reveals a deep truth about
electromagnetic coupling: Photons cannot be consistently described as little blobs of mass-energy
that travel uniquely from a single source point to a single detector point. In the HBT effect, a whole
photon’s worth of energy h̄ω is assembled at each detector out of fractional energy contributions from
each of the two sources.

In the TI description of the HBT event described above, a retarded offer wave is emitted by the
source 1 and travels to both detectors A and B. Similarly, a retarded offer wave is emitted by the
source 2 and travels to both detectors. Detector A receives a linear superposition of the two offer
waves and seeks to absorb the “offered” energy by producing an advanced confirmation wave. If the
phases match, as they will in a coincident event, the energy transfer begins with an exponential
increase in the dipole moment of each source atom. Atoms in detectors A and B respond similarly,
their oscillating dipole moments producing advanced confirmation waves that travel back to the two
sources, each of which responds with an increasing dipole moment that enhances the offer waves.
A four-atom transaction of the form shown in Figure 14 is formed that removes one photon’s worth of
energy h̄ω from each of the two sources 1 and 2 and delivers one photon’s worth of energy h̄ω to each
of the two detectors A and B.

Neither of the detected “photons” can be said to have originated uniquely in one of the two sources.
The energy arriving at each detector originated partly in one source and partly in the other. It might be
said that each source produced two “fractional photons" and that these fractions from two sources
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combined at the detector to make a full size “photon”. The “particles” transferred have no separate
identity that is independent from the satisfaction of the quantum mechanical boundary conditions.
The boundary conditions here are those imposed by the HBT geometry, conservation laws, and the
detection criteria.

Finally, we note that in many experiments published in the physics literature the HBT effect has
been observed and demonstrated not only for photons, but also in the detection of charged π mesons
emitted in the ultra-relativistic collision of heavy nuclei. It is observed that the detection probability
doubles when the detected particles are close in momentum and position. Furthermore, in nuclear
physics experiments with pairs of half-integer-spin neutrons or protons, a Pauli-Exclusion version of
the HBT effect has been observed, in which the detection probability drops to zero when the detected
particles are close in momentum and position [50]. All of these particle-like entities “travel as waves
but arrive as particles”.

13.2. Splitting Photons

At the 5th Solvay Conference in 1927, Albert Einstein posed a riddle, sometimes called “Einstein’s
Bubble Paradox”, to the assembled founders of quantum mechanics [12,51]. Einstein’s original
language was rather convoluted and technical (and in German), but his question can be simply stated
as follows:

A source emits a single photon isotropically, so that there is no preferred emission direction. According
to the quantum formalism, this should produce a spherical wave function Ψ that expands like an
inflating bubble centered on the source. At some later time, the photon is detected. Since the photon
does not propagate further, its wave function bubble should “pop”, disappearing instantaneously from
all locations except the position of the detector. In this situation, how do the parts of the wave function
away from the detector “know” that they should disappear, and how is it enforced that only a single
photon is always detected when only one photon is emitted?

The implication of his question is that, if a photon is an indivisible particle, it should not be possible
to divide one. However, we have already seen in the Hanbury–Brown–Twiss effect that photons are
not little indivisible billiard balls and that they can divide their energy between two receiving atoms.
How, then, is it possible that for one photon emitted there is always only one received?

A search for this hypothetical divided-photon behavior is implemented in the setup shown in the
left panel in Figure 15, which was enabled once it became possible to build sources of single photons.
The idea is that, if a photon is just a short pulse of light, half of it should go through each of the dotted
paths, and both halves should be counted at the same time, registering as a coincidence. Of course,
the original pulse must have twice the energy required to trigger a detector, so either half by itself
would have just enough. However, if the photon was indivisible, as mandated by certain versions of
QM, it would make a random decision on which path to take, and no coincidences would be observed.
In practice, the number of coincidences is counted for a certain counting period, with the time delay τ

between the two detector output pulses as a parameter. Since the photons are generated randomly,
the time between successive photons can accidentally range from zero to large, and a plot of the
number of correlator outputs vs. time delay τ gives information about the statistics of the source.

Modern versions of the experiment [52] give plots like that shown in the right panel in Figure 15.
[Early versions of this kind of experiment suffered from certain defects that made them inconclusive.
A definitive version using “heralded photons” was finally accomplished by Clauser in 1973 [53].]
Let us look at the experiment from a TI perspective: The source excites one atom, which, due to
random coupling, develops a superposition with a tiny presence of ground state and nearly unity
excited state. As described for the two-atom photon, the tiny presence in the superposition enables
the dipole moment to oscillate, thereby generating a radiating vector potential that propagates along
both dotted paths to both detectors. To find a perfectly matched partner atom is rare, but, when one
matches up, a quantum handshake grows up connecting them.
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Figure 15. Left: Schematic of the photon-splitting experiment. Right: Plot of the number of
coincidences vs. time delay between the arriving pulses. The source on average generates a photon per
≈12 nsec. The finite number counted at zero delay is consistent with the accidental presence of two
excited atoms.

There are then three possible outcomes:

1. The handshake goes to completion and the partner atom is in one of the detectors, in which case
only the chosen detector registers an output.

2. The handshake goes to completion, but the partner atom is not in one of the detectors. In this
case, no output is registered from either detector.

3. The initial stages of a handshake begins in two partner atoms, one in each detector. When the
source atom has de-excited, both of the detector atoms are left in mixed states with roughly equal
components of ground-state and excited state wave functions, as was illustrated in Figure 7.
This is not a stable configuration because both of the detector atoms have oscillating dipole
moments sending strong “unrequited” advanced confirmation waves. These waves are in phase
at and focused on the source, and they are likely to find another well-phased excited-state atom
there or nearby that will complete the four-way transaction. Thus, a four-atom HBT event
should be created, in which there are two emissions and two detections. Such an unlikely event
would register as an “accidental” case of two simultaneous emissions in the same time window.
There will never be an event with a single emission and two detections.

Thus, we see that the outcomes of the experiment predicted by TI and QM are essentially identical.
Certainly, no solid conclusion can be drawn from this experiment as to whether quantization occurs in
the field or in the transaction.

13.3. Freedman–Clauser Experiment

In our introductory discussion of Schrödinger’s visualization of his newly-invented Wave
Mechanics in Section 3, we described how Clauser and his colleagues, through experiments that
were heroic at the time, were able to show that no “local, realistic theory” was compatible with their
results [6–11]. We now describe the earliest conclusive version of these EPR experiments and show
how our TI approach gives a simple and natural explanation of the otherwise mysterious outcome.
A sketch of the arrangement is shown in Figure 16.

The atomic configuration used was the three-level system of the Ca atom, shown at the right of
the figure. The atomic wave functions were an upper 4p2 S0 state Ψ3 of frequency ω3, a middle 4p4s P1

state Ψ2 of frequency ω2, and a 4s2 S0 ground state Ψ1 of frequency ω1, so that the cascade starts and
ends in an S0 state of zero angular momentum.
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Figure 16. Left: Schematic of the polarization-correlation experiment. Right: Energy levels of the Ca
atoms used in this experiment. From Freedman and Clauser 1972 [6].

The state wave functions are of the same form as those given in Equation (2):

Ψ3 = R3(r) e−iω3t Ψ2 = f2(r) cos(θ) e−iω2t = R2(r, θ) e−iω2t Ψ1 = R1(r) e−iω1t (64)

The transition state is a superposition of these three states: The analysis is a simple extension of
that for the two-level system, starting with Equation (10):

Ψ = aeiφa R1e−iω1t + beiφb R2e−iω2t + ceiφc R3e−iω3t, (65)

The charge density of the mixed state is then:

ρ = qΨ∗ Ψ
ρ

q
=
(

ae−iφa R1eiω1t + be−iφb R2eiω2t + ce−iφc R3eiω3t
) (

aeiφa R1e−iω1t + beiφb R2e−iω2t + ceiφc R3e−iω3t
)

= a2R2
1 + b2R2

2 + c2R2
3

+ 2abR1R2 cos
(
(ω2 −ω1)t + (φb − φa)

)
+ 2acR1R3 cos

(
(ω3 −ω1)t + (φa − φc)

)
+ 2bcR2R3 cos

(
(ω3 −ω2)t + (φb − φc)

)
(66)

The dipole srength dij for the three terms is given by straightforward extension of Equation (18)

d12 = 2q
∫

R1R2z d23 = 2q
∫

R3R2z d13 = 2q
∫

R1R3z = 0 (67)

By symmetry around the (+z axis) of the spherical coordinate system, both d12 and d23 are in the
~z direction determined by the direction of the Ψ2 wave function. In general, that direction will shift
around in space depending on the coupling of the atom to others. However, in any given situation,
there is only one z-axis that defines the “North pole” direction, and both dipole moments are oscillating
in that direction. Thus, it is the Ψ2 state, shared by both transactions of the 3-state “cascade” that aligns
the linear polarizations of the two interlocking transactions.

13.3.1. Dynamics of the Transaction

The cascade atom is emitted from the oven shown at the top of the figure. It is is initially “pumped”
by the D2 arc when it is centered between the two lenses. The excitation is along the 2275Å dashed path
on the energy diagram, from which it relaxes into the 4p2 S0 excited state where a ≈ 0, b ≈ 0, c ≈ 1,
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leaving a small residual admixture of the middle and ground states. By Equation (66) and the obvious
generalization of Equation (19), the superposition begins to oscillate with dipole moment:

dipole moment = q 〈z〉 = d12ab cos(ω12t + φab) + d23bc cos(ω23t + φbc) (68)

where we have included only non-zero time-varying terms terms and have used:

ω12 = (ω2 −ω1) ω23 = (ω3 −ω2) φab = (φb − φa) φbc = (φc − φb) (69)

Because ω12 6= ω23, the two terms in the dipole moment do not interact over periods of many
cycles, and each term can couple to a separate atom to form its own quantum handshake. The analysis
has already been done starting with Equation (35) and ending with Equation (41), and applies directly
to the upper (ω23) transaction with atom we will call α, which has level spacing exactly equal to E23.

Since c and aα both start almost equal to 1 and have the same derivative, we can set c = aα.

∂Eα

∂t
= −E23

∂c2

∂t
= −E23

∂a2
α

∂t
= −Pα c b aαbα sin(φα) = −Pα c2 b

√
1− c2 sin(φα) (70)

Similarly, we describe the fraction a2 of the superposition in the ground state due to the lower
5227Å (ω12) transaction with atom we will call β, which has level spacing exactly equal to E12.

Since a and bβ both start almost equal to 0 and have the same derivative, we can set a = bβ.

∂Eβ

∂t
= E12

∂a2

∂t
= E12

∂b2
β

∂t
= Pβ a b aβbβ sin(φβ) = Pβ a2 b

√
1− a2 sin(φβ) (71)

These relations may then be expressed more compactly as:

∂c2

∂t
= − 1

τα
c2 b

√
1− c2 ∂a2

∂t
=

1
τβ

a2 b
√

1− a2 a2 + b2 + c2 = 1 (72)

where 1/τβ = Pβ sin(φβ)/E12 and 1/τα = Pα sin(φα)/E23 express the respective strength of coupling
to each atom, and the last relation constrains the superposition to contain exactly one electron.
Equation (72) is identical in form to Equation (43) with the exception of the shared state amplitude b
occurring in both derivatives.

The behavior of this arrangement, shown in Figure 17, is very instructive. To review in brief:
The cascade atom is prepared by providing the energy to promote the electron to the upper state:
c ≈ 1, a ≈ 0, b ≈ 0. The preparation is never perfect, so there is always a small residual of b and a
components in the initial superposition. The small admixture of b and c, by Equation (68), creates
an oscillating dipole moment at frequency ω23, the amplitude of which is shown as the red curve in
the right panel of Figure 17. That oscillating dipole moment initiates a vector potential “offer wave”
which propagates outward according to Equation (37). When that vector potential couples to the wave
function of another atom of the same frequency, its wave function oscillates with the vector potential
in the correct phase to withdraw energy according to Equation (50). The vector potential from that
oscillation propagates backwards in time, so it is “felt” by the cascading atom as if it had been there
all along.

The Transactional Interpretation is applied to the Freedman–Clauser experiment as shown in
Figure 18. Two-way handshakes between the source and the two polarimeters are joined at the source
and must satisfy the boundary condition, based on conservation of angular momentum in a system
that begins and ends in a state of zero angular momentum that the polarizations must match for the
two offer waves emitted back-to-back. This V-shaped transaction holds the key to understanding the
mechanism behind quantum nonlocality in EPR expertiments.
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Figure 17. Left: Superposition contributions of the upper state c2 (red), shared middle level b2 (green)
and ground state a2 (blue). Right: Amplitude of dipole oscillations due to upper transition at ω23 (red)
and lower transition at ω12 (blue), from. The horizontal axis in both plots is time in units of τα = 1.5 τβ.

Figure 18. Three-vertex transaction formed by a detection event in the Freedman–Clauser experiment.
Linked transactions between the source and the two polarimeters cannot form unless the source
boundary condition of matching polarization states is met.

It was pointed out by one of our reviewers that the kind of description just given might appeal
to readers who are not accustomed to standard relativistic space-time diagrams, on which events on
the “light cone” are local in the sense that r2 − c2t2 = 0, and that we had, in some measure, ignored
G.N. Lewis’ chiding quoted earlier “A dissymmetry alien to the pure geometry of relativity has been
introduced by our notion of causality.” Thus, let’s try it again:

A quantum handshake is an antisymmetric bidirectional electromagnetic connection between
two atoms on a light cone, whose direction of time is the direction of positive energy transfer.

Either way we look at it, the cascade atom and atom α are locked in phase and amplitude
at frequency ω23, and the locked amplitude of oscillation of the wave functions of the two atoms
is growing with time. In the process, the z-axes of both atoms becomes better and better aligned.
Meanwhile, the small superposition amplitudes b and a are growing, thus developing a growing
oscillation at ω12, shown by the blue curve in the right panel of Figure 17. Since both the upper and
lower levels are S states, they have no effect on the orientation of the oscillation, which is determined
by the shared middle level, which is a P state that has a definite direction in space. That direction
determines the direction of oscillation of any superposition involving that P state. The vector potential
from the nascent ω12 oscillation recruits a willing atom β whose level spacing is precisely match to
ω12, and forms an embryonic quantum handshake of its own whose z-axis is already determined by
the fully developed ω23 oscillation. From there, both transactions were completed, with z axes aligned,
in very much the same way we have described for a single photon.
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13.3.2. The NCT-Killer Result

The unique aspect of the Freedman–Clauser experiment was separating the back-to-back paths of
the two wave propagations with filters that selected the ω23 path to the left and the ω12 path to the
right. Each path was equipped with its own glass-plate-stack linear polarizer, whose angle could be
adjusted. The number of coincidences of signals from the left and right photomultipliers P.M.1 and
P.M.2 were plotted as a function of the angle φ between the polarization axes of the polarizers, and is
shown in Figure 19.

Figure 19. Coincidence rate vs. angle φ between the polarizers, divided by the rate with both polarizers
removed. The solid line is the prediction by quantum mechanics, calculated using the measured
efficiencies of the polarizers and solid angles of the experiment.

The key aspect of Figure 19 is that at φ = 90◦ the coincidence rate drops to essentially zero.
The graph does show a small non-zero coincidence rate at 90◦, but this is because of the imperfect
linear polarization discriminations of the glass-plate-stack polarizing filters and the finite solid angles
of the detection paths. Jaynes’ NCT approach failed to reproduce [32] this result. That failure, in the
view of most of the field, “falsified” the NCT approach to quantum phenomena and caused it to be
subsequently ignored.

We can understand this result very simply from our TI perspective, reasoning directly from
Figure 17: By the time the blue ω12 transition is just getting started, the red ω23 transition is well along,
and has connected to a partner in P.M.2 through polarizer 2. Since the polarizer only transmits a vector
potential aligned with its axis of polarization, the z axes of both the cascade atom and atom α will be
well aligned with polarizer 2. Now, as the blue oscillation just begins to build, its axis, as part of the
same P wave function, will also be aligned with polarizer 2, at rotation angle θ2.

The way that these glass-plate-stack polarizers work is that they only pass the component of
propagating vector potential along their axis of polarization, the orthogonal component being reflected
out of the direction of propagation. Thus, the fraction of θ2 polarized vector potential that can pass
through a perfect θ1 oriented polarizer 1 is just cos(θ2 − θ1). Thus, the amplitude of the nascent
ω12, θ2 polarized “offer wave” propagating outward from the cascade atom through polarizer 1 will
be proportional to cos(θ2 − θ1). By Feynman’s Grand Principle, the probability amplitude of an “offer
wave” actually forming a transaction is proportional to the amplitude of the vector potential. Since, in
this example, the ω23 transaction in P.M.2 has already formed, the slightly later formation of an ω12

transaction in P.M.1 will count as a coincidence. The probability of coincidence counts will therefore
be proportional to the square of the probably amplitude which, for this case, is cos2(θ2 − θ1) which,
when corrected as noted, gives the solid line in Figure 19 and is zero when φ = 90◦. Once again,
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the bi-directional non-local nature of the quantum handshake predicts the observed outcome of this
historic experiment.

14. Conclusions

The development of our understanding of quantum systems began with a physical insight of
deBroglie: Momentum was the wave vector of a propagating wave of some sort. Schrödinger is well
known for developing a sophisticated mathematical structure around that central idea, only a shadow
of which remains in current practice. What is less well known is that Schrödinger also developed a deep
understanding of the physical meaning of the mathematical quantities in his formalism. That physical
understanding enabled him to see the mechanism responsible for the otherwise mysterious quantum
behavior. Meanwhile, Heisenberg, dismissing visual pictures of quantum processes, had developed a
matrix formulation that dealt with only the probabilities of transitions—what he called “measurables.”
It looked for a while as if we had two competing quantum theories, until Schrödinger and Dirac
showed that they gave the same answers. However, the stark contrast between the two approaches
was highlighted by the ongoing disagreement in which Bohr and Heisenberg maintained that the
transitions were events with no internal structure, and therefore there was nothing left to be understood,
while Einstein and Schrödinger believed that the statistical formulation was only a stopgap and that a
deeper understanding was possible and was urgently needed. This argument still rages on.

Popular accounts of these ongoing arguments, unfortunately, usually focus on the 1930 Solvay
Conference confrontation between Bohr and Einstein that was centered around Einstein’s clock
paradox, a clever attempted refutation of the uncertainty principle [51]. Einstein is generally considered
to have lost to Bohr because he was “stuck in classical thinking.” However, as detailed in The
Quantum Handshake [12], Einstein’s effort was doomed from the start and was also beside the
point. The uncertainty principle is simply a Fourier-algebra property of any system described by waves.
Both parties to the Solvay argument lacked any real clarity as to how to handle the intrinsic wave
nature of matter. In the introduction, we quoted Einstein’s deepest concern with statistical QM:

There must be a deeper structure to the quantum transition.
Back in 1926, the field was faced with a choice: Schrödinger’s wave function in three-dimensional

space, or Heisenberg and Born’s matrices, in as many dimensions as you like. The choice was put forth
clearly by Hendrik Lorentz [54] in a letter to Schrödinger in May, 1926:

"If I had to choose now between your wave mechanics and the matrix mechanics, I would give the
preference to the former because of its greater intuitive clarity, so long as one only has to deal with
the three coordinates x,y,z. If, however, there are more degrees of freedom, then I cannot interpret the
waves and vibrations physically, and I must therefore decide in favor of matrix mechanics. However,
your way of thinking has the advantage for this case too that it brings us closer to the real solution of
the equations; the eigenvalue problem is the same in principle for a higher dimensional q-space as it is
for a three-dimensional space.

"There is another point in addition where your methods seem to me to be superior. Experiment
acquaints us with situations in which an atom persists in one of its stationary states for a certain time,
and we often have to deal with quite definite transitions from one such state to another. Therefore, we
need to be able to represent these stationary states, every individual one of them, and to investigate
them theoretically. Now a matrix is the summary of all possible transitions and it cannot at all be
analyzed into pieces. In your theory, on the other hand, in each of the states corresponding to the
various eigenvalues, E plays its own role.”

Thus, the real choice was between the intuitive clarity of Schrödinger’s wave function and the
ability of Heisenberg–Born matrix mechanics to handle more degrees of freedom. That ability was
immediately put to the test when Heisenberg [55] worked out the energy levels of the helium atom,
in which two electrons shared the same orbital state and their correlations could not be captured by
wave functions with only three spatial degrees of freedom. That amazing success set the field on the
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path of eschewing Schrödinger’s views and moving into multi-dimensional Hilbert space, which was
further ossified by Dirac and von Neumann. Schrödinger’s equation had been demoted to a bare
matrix equation, engendering none of the intuitive clarity, the ability to interpret the waves and vibrations
physically so treasured by Lorentz.

The matrix formulation of statistical QM, as now universally taught in physics classes, saves us
the “tedious” process of analyzing the details of the transaction process. That’s the good news. The bad
news is that it actively prevents us from learning anything about the transaction process, even if we want to!

What has been left out is, as Einstein said, any “description of the individual system”.
Thus, it was left to the more practical-minded electrical engineers and applied scientists to

resurrect, each in their own way, Schrödinger’s way of thinking because they needed a “description
of the individual system” to make progress. Electrons in conductors were paired into standing waves,
which could carry current when the propagation vector of one partner was increased and that of the
other partner decreased. Energy gaps resulted from the interaction of the electron wave functions with
the periodic crystal lattice. Those same electron wave functions can “tunnel” through an energy gap
in which they decay exponentially with distance. The electromagnetic interaction of the collective
wave functions in superconducting wires leads to a new formulation of the laws of electromagnetism
without the need for Maxwell’s equations [16]. The field of Quantum Optics was born. Conservation
of momentum became the matching of wavelengths of waves such that interaction can proceed.
When one such wave is the wave function of an electron in the conduction band and the other is
the wave function of a hole in the valence band of a semiconductor, matching of the wavelengths of
electron, hole, and photon leads to light emission near the band-gap energy.

When that emission intensity is sufficient, the radiation becomes coherent—a semiconductor
laser. These insights, and many more like them, have made possible our modern electronic technology,
which has transformed the entire world around us.

Each of them requires that, as Lorentz put it: we... represent these stationary states, every individual
one of them, and to investigate them theoretically.

Each of them also requires that we analyze the transaction involved very much the way we have
done in this paper.

What we have presented is a detailed analysis of the most elementary form of quantum transition,
indicating that the simplest properties of solutions of Schrödinger’s equation for single-electron atomic
states, the conservation of energy, and a symmetry property of relativistic laws of electromagnetic
propagation, together with Feynman’s insight that all paths should be counted, give a unique form to
the photon transaction between two atoms.

We have extended this approach to experiments involving three atoms. The reason we can treat
situations with more than one electron using a wave-mechanics Schrödinger equation that only works
for one electron is that the non-local bi-directional electromagnetic coupling between wave functions
can be factored into a retarded wave propagating forward in time and an advanced wave propagating
backward in time, the vector potential of each partner in a photon transaction being incorporated in
the opposite partner’s one-electron Schrödinger equation.

These calculations are, of course, not general proofs that in every system the offer/confirmation
exchange always triggers the formation of a transaction. They do, however, represent demonstrations
of that behavior in tractable cases and constitute prototypes of more general transactional behavior.
They further demonstrate that the transaction model is implicit in and consistent with the Schrödinger
wave mechanics formalism, and they demonstrate how transactions, as a space-time standing waves
connecting emitter to absorber, can form.

We see that the missing ingredients in previous failed attempts by others to derive wave function
collapse from the standard quantum formalism were:

1. Advanced waves were not explicitly used as part of the process.
2. The “focusing” property of the advanced-retarded radiation pattern had not been identified.
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Although many complications are avoided by the simplicity of these two-atom and three-atom
systems, they clearly illustrate that there is internal structure to quantum transitions and that this structure
is amenable to physical understanding. Each of them is an example of Einstein’s “description of the individual
system”. Through the Transactional Interpretation, the standard quantum formalism is seen as an
ingenious shorthand for arriving at probabilities without wading through the underlying details that
Schrödinger described as “tedious”.

Although the internal mechanism detailed above is of the simplest form, it describes the
most mysterious behavior of quantum systems coupled at a distance, as detailed in [12]. All of
these behaviors can be exhibited by single-electron quantum systems coupled electromagnetically.
The only thing “mysterious” about our development is our unorthodox use of the advanced-retarded
electromagnetic solution to conserve energy and speed up the transition. Therefore, we have learned
some interesting things by analyzing these simple transactions!

This experience brings us face to face with the obvious question: What if Einstein was right?
If there is internal structure to these simple quantum transitions, there must also be internal structure to

the more complex questions involving more than one electron, which cannot be so simply factored!
In this case, we should find a way to look for it. That would require that we effectively time-travel

back to 1926 and grok the questions those incredibly talented scientists were grappling with at the time.
To face into the conceptual details of questions involving an overlapping multi-electron system is a

daunting task that has defeated every attempt thus far. We strongly suspect that the success achieved
by the matrix approach—adding three more space dimensions and one spin dimension for each
additional electron—came at the cost of being “lost in multi-dimensional Hilbert space.” Heisenberg’s
triumph with the helium atom led into a rather short tunnel that narrowed rapidly in the second row
of the periodic table.

Quantum chemists work with complex quantum systems that share many electrons in close
proximity, and thus must represent many overlapping degrees of freedom. Their primary goal is to
find the ground state of such systems. Lorentz’s hope—that the intuitive insights of Schrödinger’s
wave function in three dimensions would bring us closer to the real solution in systems with more than
one electron—actually helped in the early days of quantum chemistry: Linus Pauling visualized
chemical bonds that way, and made a lot of progress with that approach. It is quite clear that the
covalent bond has a wave function in three dimensions, even if we don’t yet have a fully “quantum”
way of handling it in three dimensions. The Hohenberg–Kohn theorems [56] demonstrate that the
ground-state of a many-electron system is uniquely determined by its electron density, which depends
on only three spatial coordinates. Thus, the chemists have a three-dimensional wave function for
many electrons! They use various approaches to minimize the total energy, which then gives the best
estimate of the true ground state.

These approaches have evolved into Density Functional Theory (DFT), and are responsible for
amazingly successful analyses of an enormous range of complex chemical problems. The original
Thomas–Fermi–Hohenberg–Kohn idea was to make the Schrödinger equation just about the 3d density.
The practical implementations do not come close to the original motivation because half-integer spin,
Pauli exclusion, and 3N dimensions are still hiding there. DFT, as it stands today, is a practical tool
for generating numbers rather than a fundamental way of thinking. Although it seems unlikely at
present that a more intuitive view of the multi-electron wave function will emerge from DFT, the right
discovery of how to adapt 3D thinking to the properties of electron pairs could be a major first step in
that direction.

When we look at even the simplest two-electron problems, we see that our present understanding
uses totally ad hoc rules to eliminate configurations that are otherwise sensible: The most outrageous
of these is the Pauli Exclusion Principle, most commonly stated as: Two electrons can only occupy the
same orbital state if their spins are anti-parallel.

It is the reason we have the periodic table, chemical compounds, solid materials, and electrical
conductors. It is just a rule, with no underlying physical understanding. We have only mathematics
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to cover our ignorance of why it is true physically. [The matrix formulation of QM has a much fancier
mathematical way of enforcing this rule. The associated quantum field theory axiom is not a physical
understanding.]

There is no shame in this—John Archibald Wheeler said it well:

"We live on an island surrounded by a sea of ignorance.

As our island of knowledge grows, so does the shore of our ignorance."

The founders made amazing steps forward in 1926.
Any forward step in science always opens new questions that we could not express previously.
However, we need to make it absolutely clear what it is that we do not yet understand:

• We do not yet understand the mechanism that gives the 3D wave function its “identity”,
which causes it to be normalized.

• We do not yet have a physical picture of how the electron’s wave function can be endowed
with half-integer “spin”, which why it requires a full 720◦ (twice around) rotation to bring the
electron’s wave function back to the same state, why both matter and electron antimatter states
exist, and why the two have opposite parity.

• We do not yet have a physical understanding of how two electron wave functions interact to
enforce Pauli’s Exclusion Principle.

However, our analysis has allowed us to understand conceptually several things that have been
hidden under the statistics: We saw that the Bose–Einstein property of photons can be understood
as arising from the symmetry of electromagnetic coupling together with the movement of electron
charge density of a superposed state. There was nothing “particle-like” about the electromagnetic
coupling. Indeed, the two-way space-time symmetry of the photon transaction cannot really be viewed
as the one-way symmetry of the flight of a “photon particle.” Thus, looking at the mechanism of
the “wave-function collapse” gives us a deeper view of the “boson” behavior of the photon: The rate
of growth of oscillation of the superposed state is, by Equation (26), proportional to the oscillating
electromagnetic field. When the oscillating currents of all the atoms are in phase, the amplitudes of
their source contributions add, and any new atom is correspondingly more likely to synchronize its
contribution at that same phase.

Thus, the “magic” bosonic properties of photons, including the quantization of energy h̄ω

and tendency to fall into the same state, are simply properties of single-electron systems coupled
electromagnetically: Their two-way space-time symmetry is in no way “particle-like.” It seems as
though there is, after all, a fundamental conceptual difference between “matter” and “coupling”.

Perhaps, it is the stubborn determination of theoretical physicists to make everything into particles
residing in a multi-dimensional Hilbert space that has delayed for so long Lorentz’s greater intuitive
clarity—a deeper conceptual, physical understanding of simple quantum systems.

Thanks to modern quantum optics, we are experimentally standing on the shoulders of giants:
We can now routinely realize radio techniques, such as phase-locked loops, at optical frequencies.
The old argument that “everything is just counter-clicks” just doesn’t cut it in the modern world!

Given the amazing repertoire of these increasingly sophisticated experiments with coherent
optical-frequency quantum systems, many of the “mysterious” quantum behaviors seem more and
more physically transparent when viewed as arising from the transactional symmetry of the interaction,
rather than from the historic “photon-as-particle” view. The bottom line is that Schrödinger wave
mechanics can easily deal with issues of quantum entanglement and nonlocality in atomic systems
coupled by matched advanced/retarded 4-potentials. It remains to be seen whether this wave-based
approach can be extended to systems involving the emission/detection of quark-composites or leptons.

Our Caltech colleague Richard Feynman left a legacy of many priceless quotations; a great one is:
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“However, the Real Glory of Science
is that we can Find a Way of Thinking
such that the Law is Evident!”

What he was describing is Conceptual Physics.
From our new technological vantage point, it is possible to develop Quantum Science in this

direction, and make it accessible to beginning students.
We urge new generations of talented researchers to take this one on.
Be Fearless—as they were in 1926!
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Abbreviations

The following abbreviations are used in this manuscript:

DFT density functional theory
EPR experiment Einstein, Podolsky, and Rosen experiment demonstrating nonlocality
NCT neoclassical theory, i.e., Schrödinger’s wave mechanics plus Maxwell’s equations
QM quantum mechanics
TI the Transactional Interpretation of quantum mechanics [12]
WFE Wheeler–Feynman electrodynamics
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