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Abstract

An attempt is made to address a stylized question posed to Ernst
Strauss by Albert Einstein regarding the amount of freedom present in
the construction of our field theoretic universe.
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1 Introduction: The Problem

“What really interests me is whether god had any choice in the
creation of the world.” -Albert Einstein to Ernst Strauss

In the beginning we will let X4 be a 4-dimensional C∞ manifold with a chosen
orientation and unique spin structure. It is otherwise considered to be without
a geometry in that no metric, symplectic, complex, volume, quaternionic or
other structure is yet imposed upon it. It was the original intention of [8] to
consider to what extent the opening epigrammatic question of Einstein could
be considered a scientific program, rather than a philosophical one, by asking
whether the observed world could be extracted from little more than such initial
data as above.

Because Einstein did not specify what he meant exactly, we have taken the
liberty of reformulating his question as follows:

“Starting fromX4, as the topological structure underlying the Space-
Time construction, to what extent can the observed universe to-
gether with stylized contents and laws mirroring its own be gener-
ated without further assumptions?”

so that what we are effectively asking is whether there is a plausible map:

X4 −→



+sRicci Scalar Einstein

− 1
4 < FA, FA > Yang-Mills-Maxwell

+i < ψ̄, /∂Aψ > Dirac

+ < φ, d∗AdAφ > −V (φ) Higgs

+ < ψ̂, φψ > Yukawa

L= Sl(2,C) Lorentz Group

SU(3)× SU(2)×U(1) Internal Symmetries

Q = C16
H Family Quantum Numbers

ψ = ⊕3
a ψa Three Families of Matter

MCKM Cabibo Kobayashi Maskawa Matrix

(1.1)
which recovers the fundamental or seemingly fundamental stylized aspects of
the observed universe from which we appear to have emerged.

To be sure, this does not seek to address the well known eternal question
of “Why is there something rather than nothing?” as we are not aware of any
available reformulation of that question which renders it scientific rather than
religious or philosophical. Thus, as close as we will come to that question is

“Why might we expect a world of the richness we have found through
science and observation, to arise out of something which is minimally
determined beyond being a low dimensional arena for the rules of
calculus to collide with those of linear algebra.”
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From our perspective, a fundamental theory is simply a theory that effectively
discourages further scientific search for a more foundational layer. Were the
world recoverable from a manifold X4 (with little more than minor additional
data), it would not bring either physics or theology to an end by any means.
It would, however move the technically minded at last away from the search
for fundamental law and focus them instead upon the consequences of the rules
encoded leaving the search for an explanation illuminating the initial input as
a purely philosophical or, perhaps, religious question.

1.1 Strategy: Ideas over Instantiation (following Dirac)

This work arises from a particular orientation which should be shared with the
reader up front. At its heart, it’s belief is that most advances that are held
up for years or even decades are blocked because of confounding factors par-
ticular to instantiations of the needed idea confused for being problems with
the idea itself. This perspective animates Dirac’s 1963 Scientific American ar-
ticle [3] where he argues that experiment can only be used to check agreement
with the instantiation of an idea, rather than the idea itself. Dirac references
Schrodinger’s failure to take spin into account leading to a superficial failure to
agree with experiment. He could just as easily, however, been writing about his
own superficial mistake in viewing the electron and proton as anti-particles to
each other despite the obvious mass asymmetry as pointed out by Heisenberg.

In all such cases, the initial instantiations of radical physical ideas were either
flawed in a way the underlying ideas were not, or the presentation was such that
it caused the wrong pictures to form in the minds of those who heard it. Thus
our belief is that we should be following Dirac at this juncture and looking for
natural theories and not over-indexing on their initial instantiations.

Further, we have noticed something exceedingly interesting and no less odd.
The tiny minority of theorists who have contributed directly to physical law
all appear to share a common quixotic focus on beauty and internal coherence
rather than an immediate emphasis on formulae, instantiation and experiment.
We take from this that Einstein, Dirac and Yang were not giving general advice
as to how to do physics but rather very specific advice as to how to seek new
physical law to the almost negligible subset of working theorists who might
follow.

As such it is our contention that one should search for a theory that is
geometrically and algebraically natural and quite close to our world at a stylistic
level (e.g. chiral, three generations, etc...). If such a theory can be found,
then, given the seemingly idiosyncratic nature of the various peculiarities of the
Standard Model, it is our (historically well motivated but partially unjustified)
belief that it will quite likely be that initial instantiations will be confounded
by difficulties that are likely to prove inessential and thus surmountable.
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1.2 About the Present Work

This work was begun while the author was finishing a combined Bachelor’s and
Master’s degree program at the University of Pennsylvania which ended in 1985.
At the time neutrinos were not yet claimed to posses mass and there were quite
possibly 15 particles in a generation of matter under grand unified ideas like
versions of SU(5). The present theory began on the narrow hope or ‘joke’ that
in some sense if:

15 “ = ” 2
( 42+4

2
)

2 −1 (1.2)

as the dimension of internal Fermionic quantum numbers, then we would be in
the unique case where peculiar spinorial methods could unify the auxiliary fiber
bundle Geometry of Ehresmann with the intrinsic geometry of Riemann.

1.3 From Unified Field Theory to Quantum Gravity and
Back

Starting in 1984 it became common to hear from leaders of the theoretical
physics community that theoretical or fundamental physics was not about tra-
ditional unification of the kind sought for by the like of Albert Einstein. Terms
like “String Theory”, “Theory of Everything” and “Quantum Gravity” replaced
unification as the driving force behind the field.

The shift was a profound one. Students went from working mostly in physical
Lorentzian Signature with hyberbolic equations to Euclidean signature to take
advantage of the Atiyah-Singer index theorem. The number of dimensions con-
sidered typically dropped from the physical 4 dimensions to the toy dimensions
of 2 and 3 to take advantage of complex methods and so-called Chern-Simons
like theories respectively, or to ad hoc choice of 10, 11, 12 or 26 dimensions to
access ‘Calabi-Yau’ manifolds, Super-Strings and Super-gravity and other exotic
mechanisms. The physically relevant reductive or even semi-simple symmetries
related to SU(3) × SU(2) × U(1) were generally replaced with simple groups
like a single SU(2) or even U(1) in isolation. The observed family structure of
three generations of Fermions increasingly faded from interest or was pushed
onto the index theory of Calabi-Yau three-folds, while investigations began to
assume the presence of space-time Super-symmetry despite the existence of zero
experimental observation for the phenomena.

In short, interest in the direct investigation of the physical world went from
the core of physics research to a quaint backwater, as what might be termed
the “Toy-Physics era” of String Theory inspired geometric physics began.

To understand how profound the shift truly was, it is helpful to understand
what a major keynote address sounded like in theoretical physics in 1983, just
before the anomaly cancellation and its embrace by Edward Witten and other
String Theorists changed the entire nature of what it meant to be a theoretician
working on fundamental physics. Today, it reads almost as an epitaph for the
views of a bygone era. Here is Murray Gell-Mann addressing assembled leaders
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of the Theoretical Physics community at the 1983 Shelter Island II conference
just before the split in the community mediated by the anomaly cancellation:

From Renormalizability to Calculability?

“As usual, solving the problems of one era has shown up the critical
questions of the next era. The very first ones that come to mind,
looking at the standard theory of today, are

• Why this particular structure for the families? In particular,
why flavor chiral with the left- and right-handed particles being
treated differently, rather than, say, vectorlike, in which left and
right are transformable into being treated the same?

• Why 3 families? That’s a generalization of Rabi’s famous ques-
tion about the muon, which I’ll never forget: ”Who ordered
that?”) The astrophysicists don’t want us to have more than 3
families. Maybe they would tolerate a 4th, but no more, with
massless or nearly massless neutrinos; it would upset them in
their calculations of the hydrogen and helium isotope abun-
dances. Of course, if the neutrinos suddenly jumped to some
huge mass in going from known families to a new one, then
they would be less upset.

• How many sets of Higgs bosons are there in the standard the-
ory? Well, the Peccei-Quinn symmetry, which I’ll mention
later, requires at least 2, if you believe in that approach. If
there’s a family symmetry group, there may be more, because
we may want a representation of the family symmetry group:
maybe there are 6 sets of 4 Higgs bosons; nobody knows.

• Why SU(3) x SU(2) x U(1) in the first place? Here, of course,
there have been suggestions. We note that the trace of the
charge is zero in each family, and that suggests unification with
a simple Yang-Mills group at some high energy, or at least a
product of simple groups with no arbitrary U(1) factors. If the
group is simple or a product of identical simple factors, then
we can have a single Yang-Mills coupling constant.”

-Murray Gell-Mann, 1983

Sadly, the questions raised in this keynote have not really been answered at
the time of this writing, nor have they been a particularly strong motivating
force over the nearly 40 years that have followed this address. And with this
stagnation came a desire to change the key problems in the theory just cited
to ones that would allow for great deals of activity and elaboration. Thus, the
emphasis shifted to ‘Quantum Gravity’ in the following year and the search for
a compelling version of quantized string theories that would recover our world
in short order. In fact, it never arrived.
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1.4 The Twin Origins Problem

The problem of unification in physics is reasonably well appreciated by most
members of the research community ostensibly working on this problem. What
is less well appreciated is the number of distinct ways unification may be inter-
preted outside the dominant narrative within the field.

One way that seems to get comparatively less attention is to make use of the
revolution in geometric physics that happened principally between Jim Simons
and C.N. Yang at Stony Brook in the mid 1970s where it was discovered that
classical Ehresmannian bundle theoretic geometry was playing the same role
beneath classical and Quantum Field Theory that Riemannian geometry was
playing in under-girding General Relativity.

Viewed in this way, it is possibly the difference in geometric frameworks
of Einstein and Bohr that are more important than the issue of quantization.
Oddly, perhaps the most succinct synopsis of the main ideas in fundamental
physics was given in 1986 by Edward Witten in a way that laid bare that it
has been the geometry of physical law rather than the quantum which has
constituted our three greatest insights:

Figure 2: Edward Witten Synopsis.

Seen from this perspective (i) corresponds to the Einstein Field Equations of
Semi-Riemannian geometry, (ii) to the Yang-Mills generalization of Maxwell’s
equations to Non-Abelian Ehresmannian gauge theory and (iii) to the Dirac
equation which mixes the bundle structures of both frameworks. The Klein-
Gordon equation for the Higgs Fields with its iconic quartic potential is not
mentioned and the quantum is clearly featured not as a rival insight, but as a
method of viewing the three main discoveries.

This raises the question: Why did we become focused on quantizing gravity
when the underlying data given in (i) and (ii) are themselves of geometrically
different origins? So long as auxiliary principal G-bundles are invoked without
compelling justification, there is no sense in which theoretical physics will have
a satisfying origin story for the universe. Why then are we not more focused
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on the ‘Twin Origins Problem’ of why we have separate inexplicable origins for
M1,3 and SU(3)× SU(2)×U(1)?

Ostensibly this is likely to be due to the pessimism that grew up around the
lack of progress in Kaluza Klein type theories that sought a single origin. But
the fact remains that what we need is not necessarily ‘quantum gravity’ but
rather a means of harmonizing General Relativity with the Standard Model in
a theory free of paradox. To our mind, this suggests an emphasis on tying the
auxiliary data in (ii) to the fundamental substrate of (i) at the level not of the
quantum but at the level of geometry to resolve the tensions between intrinsic
and auxiliary bundle geometries.

1.4.1 Ehresmannian Geometry Advantages

The major advantages that Ehresmannian geometry offers to theoretical physics
is the freedom to choose the internal symmetries of a physical theory without
being confined to symmetries tied to the tangent bundle of Space-time. This
decoupling allows physics to account for forces like the Strong and Electro-Weak
forces responsible for atomic nuclei, the electron orbitals that surround them,
and their decay through beta radiation respectively.

Secondarily, the ability to remove redundancy in the description of nature
by restricting our attention to Gauge Invariant quantities has turned out to be
a powerful tool for reasons that, at least to this author, seem not yet completely
clear. Yet some benefit is clearly gained by being able to write down expressions
where they are most natural and then reducing them via gauge symmetry to
where they are most economical and least repetitive.

1.4.2 Riemannian Geometry Advantages

In the case of Riemannian and Pseudo-Riemannian geometries, the freedom to
consider ad hoc candidates for physical symmetries is radically restricted. Yet
there is again a major and a minor advantage.

While the full Riemann curvature tensor is a specific example of the more
general Ehresmannian Curvature tensor construction, its decomposition into
sub-components has no general analog in Ehresmannian geometry. Thus the
greatest advantage of Einstein and Grossman’s choice of Riemannian geometry
is almost certainly to replace the broad freedom lost in bundle choice with the
much more restricted freedom to play separately with the Weyl, (Traceless)
Ricci, and Scalar components of the full curvature tensor as Einstein did in
1915.

While that may not seem to modern field theoretic tastes like a sensible
trade-off given the loss in choice of structure, it appears sufficient for one
very particular application of great importance: gravity. Further, properly ab-
stracted, the projection operators onto curvature sub-components may be seen
as tensor product decompositions in such a way as to include the Dirac oper-
ator on Spinors with its contraction on 1-form valued Spinors. Viewed in this
fashion, the ability to decompose tensor products of representations involving
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the tangent and cotangent bundles is the clear enticement to work within the
metric paradigm.

The way this discussion has been framed by the above is designed to suggest
the search for a parallel in the form of a second minor advantage. And here
there is room for debate. The other main attribute of Riemannian geometry
that suggests itself hides in plain sight under the label of the ‘The Fundamental
Theorem’ of Riemannian geometry. The choice of a Levi-Civita connection made
by the metric is certainly convenient, but its use can always be seen as a choice
to be made dynamically by allowing more general connections as suggested by
Palatini. Thus its main value is that it allows the torsion tensor of any other
connection to be calculated by converting the affine space of connections into
an honest vector space with the Levi-Civita connection at the origin.

However, this has always led to a puzzle: what good is being able to define
the torsion tensor of a metric connection if the Levi-Civita connection is the
only one that appears to matter in practice? Thus the torsion tensor appears,
potentially, to be the solution to a problem which no one has yet thought to ask.
As such, its potential advantages have so far been minor with its realized ones
closer to non-existent. But it must be considered to be a potential advantage
as the natural answer to a question which may some day arise.

1.5 Notes On The Present Draft Document

There is something about the nature of LaTeX that is likely to confuse the
professional reader. It is as if a typeset document constitutes agreement to
participate in some academic social contract. No such consent is intended by
this. The author functions totally divorced from the professional research con-
text which is oddly automatically inferred from typeset mathematics by nearly
every capable reader, perhaps due to the rarity of such research programs.

Without wishing to dwell on this unduly, there is no way around the fact
that the author has been working in near total isolation from the community
for over 25 years, does not know the current state of the literature, and has few,
if any, colleagues to regularly consult.

As such this document is an attempt to begin recovering a rather more
complete theory which is at this point only partially remembered and stiched
together from old computer files, notebooks, recordings and the like dating back
as far as 1983-4 when the author began the present line of investigation. This
is the first time the author has attempted to assemble the major components of
the story and has discovered in the process how much variation there has been
across matters of notation, convention, and methodology1. Every effort has been
made to standardize notation but what you are reading is stitched together from
entirely heterogeneous sources and inaccuracies and discrepancies are regularly
encountered as well as missing components when old work is located.

The author notes many academicians find this unprofessional and therefore
irritating. This is quite literally unprofessional as the author is not employed

1The biggest issue of heterodox methodology appears to have been shifts between repre-
sentation theoretic and indicial methods of tensorial and spinorial products and contractions.
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within the profession and has not worked professionally on such material since
the fall of 1994. If you find this disagreeable, please feel free to take your
professional assumptions elsewhere. This document comes from a context totally
different from the world of grants, citations, research metrics, lectures, awards
and positions. In fact, the author claims that if there is any merit to be found
here, it is unlikely that it could be worked out in such a context due to the
author’s direct experience of the political economy of modern academic research.
This work stands apart from that context and does so proudly, intentionally,
and without apology.

With that said, the author welcomes constructive technical feedback at:
technicalfeedback@geometricunity.org and non-technical constructive feedback
at generalfeedback@geometricunity.org.

Lastly, the author notes that academicians repeatedly fail to cite, acknowl-
edge or name work that does not come from within the circle of leading research
institutions. The author alerts the reader that these practices are widespread
within the academy but are generally not acceptable in the world outside academe.
Constructive feedback is welcome but this should be considered as work in
progress of the author and not an invitation for cherry topping, denigration,
theft, scooping or other widespread anti-social academic practices broadly tol-
erated within the profession. Consult the author if this is any way confusing.

2 Incompatibility and Incompleteness Blocking
Geometric Unification

It has become familiar to hear that Einstein’s theory of gravity cannot be unified
with the Standard Model of quantum field theory because there is no known
way to renormalize a quantum theory of metrics. However, this betrays a fo-
cus on making the work of Einstein submit to the viewpoint of Bohr, that
is the signature of a group of quantum theorists who view holdouts refusing
to acknowledged the supremacy of the received quantum viewpoint as inviting
quantum domination. We hold with Einstein that the Quantum is indisputable,
but that its instantiations and their interpretations do not carry the same infal-
libility. So, for us, there are many incompatibilities between General Relativity
and the classical field theory whose quantization defines the standard model.
Our gambit is that if there is a natural classical field theory that strongly re-
sembles the standard model together with General Relativity, then if it can be
shown to emerge naturally from minimal assumptions, it is likely to be correct
or close to correct and may well suggest its own preferred quantization. This
cannot of course be proven but it is stated here as it is the governing philosophy
of the work at hand.

2.1 Failure of Gauge Covariance: Einsteinian Projection

One of the curious failures of modern gauge theory is the uncomfortable accom-
modation it gives to Einstein’s geometric general relativity. At first blush, a
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theory of gravity built on curvature should be a natural fit for the concept of
bundle symmetry. For any curvature tensor of a connection on a principal-G
bundle PG, it always lives as a Lie Algebra valued 2-form:

FA ∈ Ω2(ad(PG)) (2.1)

and the Riemannian curvature R l
ijk is no different, lying as it does as a 2-form

valued in the so called adjoint to Vierbein bundle. In fact,

R l
ijk = F∇gµν ∈ Ω2(Λ2(T ∗(X))) (2.2)

for the Levi-Civita connection ∇gµν of a metric tensor gµν as

Λ2(T ∗(X)) = ad(PFr) (2.3)

for the given metric. Further, the Riemannian curvature is extremely well be-
haved under gauge transformations

FA·h = h−1 · FA · h (2.4)

just as if it were any other curvature tensor.
The incompatibility with gauge theory is in fact entirely due to the fact

that Einstein made essential use of a linear algebraic projection of his curvature
tensor which treated the twin appearances of Λ2(T ∗X) in the definition of the
Riemannian Curvature Rlijk ∈ Ω2(X,Λ2(T ∗X)) on a common footing, while
the gauge transformations strongly distinguish the two by acting trivially on
the copy corresponding to Ω2(T ∗X) = Γ∞(Λ2(T ∗X)) but non-trivially on the
copy corresponding to ad(PFr) = Λ2(T ∗X). This leads to the simple fact that
Einstein contraction or projection

PE : Λ2(TX)⊗ Λ2(TX) −→ S2(TX) (2.5)

fails to commute
PE(FA·h) 6= (PE(FA)) · h (2.6)

with gauge transformations h.
Curiously, this failure is often covered over by many wishing to shoehorn

General Relativity into the gauge theoretic paradigm by asserting that the dif-
feomorphism group of ‘General Coordinate Transformations’ is somehow the
Gauge Group ‘H’ of GR, while the space of Metrics parameterizes the relevant
space of Levi-Civita Connections ‘A’ resulting in a weak version of A/H. Given
what we take to be the self-evident artificiality of such claims, we merely note
them here and will not dwell on them further.

2.2 Failure of Gauge Covariance: Torsion

In an explicitly trivialized coordinate patch, the covariant derivative ∇A cor-
responding to a connection A can be given by specifying the connection as an
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ad-valued 1-form A relative to the trivial connection d coming from the trivial-
ization by abuse of language. This leads to the transformation formula:

h−1 ◦ (d+A) ◦ h = d+ h−1 ·A · h︸ ︷︷ ︸
Gauge Covariant

+ h−1 · (dh)︸ ︷︷ ︸
Gauge Non-Covariant

(2.7)

highlighting that the portion of A which is peculiar to the connection is in fact
gauge covariant while the portion peculiar to the trivialization lends a disease
of gauge non-covariance to all connections which has no dependence on the
connection A at hand.

In the absence of a trivialization, but the presence of a prefered connection
A0 such as the Levi-Civita connection Ag = A0, we can write:

h−1 ◦ ∇A ◦ h−∇0 = h−1 ◦ (∇0 +A) ◦ h−∇0 (2.8)

= h−1 ◦A ◦ h + h−1 ◦ ∇0 ◦ h = h−1Ah︸ ︷︷ ︸
Connection Specific

+ h−1(d0h)︸ ︷︷ ︸
Common Disease

to see that again part of the transformation law is well behaved while the dis-
eased term is dependent only on the exterior derivative d0 = dA0 coupled to the
distinguished connection.

The problem here can be seen instantly if one tries to naively include the
gauge potential A directly in a Lagrangian or action I:

I(A) = ||A||2 =< A,A > (2.9)

so that under a gauge transformation h we have:

I(A · h) = ||A · h||2 =< A · h,A · h > (2.10)

=< h−1Ah+ h−1dh, h−1Ah+ h−1dh >

= ||h−1Ah||2︸ ︷︷ ︸
Gauge Invariant

+ ||h−1dh||2︸ ︷︷ ︸
Common Disease

+ 2 < h−1Ah, h−1dh >︸ ︷︷ ︸
Gauge Potential-Specific Disease

leading to a failure of gauge invariance due to both a shared and idiosyncratic
term spoiling the action under symmetry. Typically, the response to this is to
avoid putting the potential into the action directly and to work instead with
the better behaved curvature tensor derived from the 1-forms in the case of
the Standard Model, or to give up on gauge invariance at the bundle level (i.e.
Einstein’s compression of Riemann’s curvature tensor) and use the action to
penalize the torsion into vanishing (i.e. the Palatini action).

2.3 Higgs Sector Remains Geometrically Unmotivated

For most of the 20th century, fundamental physics was split into two halves,
only one of which was geometric. Then, in the mid 1970s, the quantum sector
was discovered to have a basis in differential geometry with the advent of the
Wu-Yang dictionary of Simons, Wu and Yang. Gauge potentials corresponded
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to the geometer’s notion of a connection and Fermi fields fit with Atiyah and
Singer’s rediscovery of the Dirac operator in a bundle theoretic context.

After that point, fields of fractional spin, spin 1 and spin 2 were all well mo-
tivated in either Ehresmannian or Riemannian geometry. This left the curious
case of the spin 0 Higgs sector with its so-called Mexican Hat potential. While
the Higgs sector could be described bundle theoretically, it was not fully natural
for geometers to consider a spinless field valued in a Lie Algebra and governed
by a quartic potential, despite the seemingly geometric nature of the Mexican
Hat shape.

2.4 Geometric Unity

This leads us finally to the question of the motivating concept(s) behind Geo-
metric Unity.

In essence, there is both a scientific basis and a human basis rooted in
political economy. The scientific basis is the more important of the two and
proceeds as follows.

Mapping out the various reasons that Riemannian and Ehresmannian ge-
ometry have continued to progress side by side reveals that there is a trade-off
to be had between the two. In the case of Ehresmannian geometry, the leading
advantage has to be the freedom to accommodate any observed field content
found through experiment through the use of auxiliary bundles structures. As
a compensating secondary advantage, the use of the gauge group to simultane-
ously transform the field content together with the derivative structures which
furnish the differential equations that govern propagation allows us to consider
a greatly reduced set of truly distinct configurations without being overwhelmed
by unnecessary redundancies that we would face in the group’s absence.

The power of these advantages are so central to the massive edifice that
is modern Quantum Field Theory that the advantages of classical Einsteinian
gravity based on Riemann’s geometry theory seem highly restrictive and almost
provincial or perhaps quaint by comparison.

Geometry \ Advantage Primary Secondary

Riemannian Projection Operators Distinguished Connection
Ehresmannian Content Freedom Gauge Group

(2.11)
The leading advantage of Einstein’s theory would most likely be thought by most
to be the ability to ‘Project’ or contract the full Riemann Curvature tensor back
onto a subspace of Symmetric 2-tensors which can be put in correspondence with
the tangent space to the parameter space of metrics. This gives the Einstein
theory the flavor of having the matter and energy warp space directly,

Analytic︷︸︸︷
d∗A (FA)︸ ︷︷ ︸

Yang-Mills

= κaJ︸︷︷︸
Source Term

vs

Algebraic︷︸︸︷
PE (FA0)︸ ︷︷ ︸

Einstein Tensor

= κbTµν︸ ︷︷ ︸
Source Term

(2.12)
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rather than a change in the curvature represented by a differential operator
providing the link. This however pays a high price in that it treats the two
copies of Λ2 in Λ2⊗Λ2 where the Riemann curvature tensor lives symmetrically
while the gauge group acts only on the second factor. This seemingly negates
much of the advantage of working within the Riemannian paradigm if one is
interested in harmonizing GR with QFT.

There is however a small hope. If one can give up the freedom of being able
to choose auxiliary gauge content as needed in the hopes of avoiding the double
origin problem, then it may be possible to work within an extremely narrow class
of theories which are amenable to the advantages of both geometries. But such
geometric frameworks are likely to be extremely restrictive. Thus one must
hope that the Standard Model and General Relativity would be of a highly
unusual and non-generic geometric variety. And the main hope here is that
observed quantum numbers of (ii) and (iii) that have no explanation within
Witten’s point (i) seem to us to be highly suggestive that the Standard Model
with its three generation and 16 particle per generation structure is of exactly
the non-generic theory that carries both attributes.

This brings us to the less scientific and more human point. Let us ask
the question whether the incentive structures of physics select for or against
the search for a highly specific and restrictive class of geometries on which
to focus. Attempts to find such a class are likely to fail, be considered as
numerological and quixotic, and be career limiting. As such, leading physicists
would likely avoid such theories in favor of flexible frameworks which do not
paint the investigator into a research corner. To a seasoned investigator, trading
gauge invariance of the action and the freedom to choose field content to fit
the needs of a problem for mere Einstein projection maps and a distinguished
connection, is likely to seem akin to a naive Magic Beans trade where something
of great value is bartered away for something of obviously lesser or even dubious
importance. Here that trade is auxiliary content freedom and gauge covariance
for contraction operators and a distinguished choice of connection.

It is the assertion here that this is not only an advantageous trade but likely
a necessary one. That is, we do not need auxiliary freedom because of our good
fortune in the Standard Model, and we can buy back the gauge invariance after
exploiting the riches of projection operators and the choice of a distinguished
connection.

2.5 Geometric Harmony vs Quantum Gravity

It is frequently stated that Gravity has to be quantized because of the paradox
that since every particle creates a gravitational field, a classical localization
would ultimately have to be as uncertain as the quantum particle’s location
under observation.

In fact, this presupposes that the answer will be found in the simple Ein-
steinian space-time paradigm where the argument is maximally persuasive.
However, even here, there is a significant issue that is often glossed over.

Because the group G̃l(4,R) does not carry a finite dimensional copy of the
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fractional spin representations, if we allow the space time metric to become un-
certain, we find a profound puzzle in the fractional spin fields. While the Spin-1
force particles and Spin-0 Higgs fields may be difficult to measure between met-
ric observations, the bundles in which they live are well defined in the absence
of a definite choice of metric. This however is not true for fractional spin fields.
Should the metric ever successfully be ‘quantized’ in a manner similar to the
other fields, there will be no finite dimensional bundle for the hadrons and lep-
tons during the period between observations. Not only do the waves become
uncertain but the media in which the waves would live would appear to be un-
certain or even said to vanish. One of the goals of GU is to ensure that the
bundles for spinors and Rarita-Schwinger matter do not vanish in the absence
of a metric.

By the above reasoning, We find the argument that gravity must be somehow
harmonized with quantum fields in an as yet unspecified way more persuasive
than the argument that metric gravity must be quantized on the same footing
as the other fields. Thus, whether gravity is to be harmonized or quantized,
it is the goal of GU to decouple the existence of the fractional spin bundles as
the medium for matter waves from the assumption of a metric in the ultimate
quantum theory.

3 The Observerse Recovers Space-Time

In order to make progress beyond modern General Relativity and Quantum
Field Theory, it is a contention of the author that Space-Time itself should be
sacrificed from the outset as being fundamental. As such, in Geometric Unity
we will proceed without loss of generality to consider not a single space, but
pairs of spaces linked by maps. The three main cases will be defined according
to:

Definition 3.1 An Observerse is defined to be a triple (Xn, Y d, {ι}) such
that

ι : Unx −→ Y dg (3.1)

are maps for local open sets Unx ⊂ Xn about some points x ∈ Xn

constituting local Riemannian embeddings for neighborhoods Un into
a Riemannian manifold Y d of equal or higher dimension inducing a
pull back metric gX = ι∗(gY ) and defining a normal bundle Nd−n

ι ⊂
T (Y ) with metric and its pull back ι∗(Nd−n

ι ) over Xn. The main cases
of this construction correspond to:

• TRIVIAL: The manifold Y = X and the map ι is the identity.

• EINSTEINIAN: The manifold Y = Met(X) is the bundle of
point-wise metric tensors over X and the maps ι = g under
scrutiny are sections of this bundle representing Riemannian or
Semi-Riemannian metric fields.
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• AMBIENT: The manifold Y dg is unconstrained beyond the con-
dition of being an immersion.

where the first is presented to cover the case of ordinary space-times
without additional structure, and the last is included so as to allow for
full generality. In this work we will consider the strongest assumption
beyond those of Einstein by working within the Einsteinian Obser-
verse to search for new physics. Note that in this case, Y doesn’t
usually have a pre-existing metric. Instead the choice of a section ι
of the metric bundle induces a metric on Y in the portion of Y that
lies above U ⊂ X.

One reason for introducing the concept of the Observerse is to allow a more
fundamental role for observation and measurement. Both of these issues have
been at the heart of confusions in relativistic observation and Quantum Mea-
surement and their as yet unsatisfactory treatment has lead some physicists to
claim that paradoxes can only be solved with a quantized gravity on par with
the other fields. Our approach is different. By working with two spaces bridged
by maps, we allow for the idea that not all fields are on par with each other and
may need to be treated differently in the fully quantized theory.

To this end we will distinguish fields according to the following:

Definition 3.2 A field χ that originates as the section of a bundle over Xn or
Y d will be called NATIVE to Xn or Y d respectively. Fields on X of the
form ι∗(χ) will be called INVASIVE to X if they are pulled back from
fields or jet bundles χ that are native to Y .

It is our contention in this investigation that physics may actually be happening
mostly on Y d but that it is widely interpreted by physicists via metric pull-back
as if it were occurring natively on Xn leading to confusion. In fact, in this
investigation, there will only be one independent field that is truly native to
Xd. This allows for the possibility that in a complete theory one could treat
the observing field on X differently from the more readily quantized fields on
Y without immediately leading to paradox. Different observations via different
sections ι would pull back different quantized values from Y onto X.

3.1 Proto-Riemannian Geometry

The bundle of point-wise metrics has some curious elementary properties that
may be well known to others, but which the author did not encounter while
working in mathematics. As might be expected, there is a tension between
the fact that the bundle is filled with metric information by construction, but
erected without reference to any metric in particular. Thus it is chimeric in that
it is in tension between both its topological and geometrical natures.

One way of noting this intermediate state is to notice that true geometries
of both Riemannian and Symplectic type induce isomorphisms between the
tangent and cotangent bundles.
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In the presence of either a metric or symplectic form on a vector space W , we
inherit a pair of canonical vector-space isomorphisms that are not canonically
determined in the absence of this geometric structure:

W −→W ∗ W ∗ −→W (3.2)

leading to two exact sequences:

0� T � T ∗ � 0 (3.3)

which, while rather trivial, suggest generalization in our case.
For the Einsteinian Observerse and its Tangent and Co-Tangent bundles

TY, T ∗Y we likewise have natural and non-trivial maps:

T (Y ) −→ T ∗(Y ) T ∗(Y ) −→ T (Y ) (3.4)

However, neither of these maps is an isomorphism as they have non-trivial
kernels. These can be fit into a repeating long exact sequences

. . . −→ T −→ T ∗ −→ T −→ T ∗ −→ . . . (3.5)

evidencing the relationship of a metric Chimeric bundle C(Y ) = C∗(Y ) to the
partial isomorphisms between T (Y ) and T ∗(Y ) as we shall now explain.

There exists a commutative diagram

0 0 0 0
↓ ↑ ↓ ↑

. . . −→ V V ∗ −→ V V ∗ −→ . . .
↓ ↑ ↓ ↑

. . . −→ T −→ T ∗ −→ T −→ T ∗ −→ . . .
↓ ↑ ↓ ↑

. . . H −→ H∗ H −→ H∗ . . .
↓ ↑ ↓ ↑
0 0 0 0

(3.6)

where all vertical sequences are short exact and the repeating central horizontal
sequence is long exact with all other maps not covered in the preceding are
metric isomorphisms.

The bundle H∗ is defined to be

H∗ = π∗(T ∗(X)) H∗ ↪→ T ∗(Y ) (3.7)

which at the point g ∈ Y carries an induced metric g via Hπ∗(π∗(g)) as the pull
back of the push-forward metric. We will refer to the dual bundle (H∗)∗ simply
as H.

Conversely, as a fiber bundle, the total space Y carries a vertical sub-bundle
V ⊂ T (Y ) as the subspace of vectors pointing along the fibers of Y over X.
Here again, the structure of Y as a space of metrics becomes germane.
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At a point y ∈ Y , lying in the fiber π−1(π(y)) let two symmetric two tensors
A, B ∈ TVy (X) represent a random choice of two elements in the vertical tangent
space along two different smooth paths of non-degenerate metrics gA(t), gB(t)
where at time t = 0 we have gA(0) = gB(0) = y with ġA(t) = A and ġB(t) = B.
Then, by the symmetry of the metrics, the Frobenius inner product is defined
by the double contraction against the metric represented by the point y which,
in an orthonormal basis would look like:

< A,B >y= Try(AT ·B) = Try(A ·B) (3.8)

were the tensors A,B represented as matrices in that basis. Here the space of
metrics breaks into a Trace and Traceless component. The Traceless component

has signature (i ·n− i2, n
2+2i2−2i·n+n−2

2 ) with a freedom to assign either a (0,1)
or (1,0) signature to the trace component. In this exposition we choose the later
so as to assume our Frobenius metric can be taken to be of signature

(i · n− i2 + 1,
n2 + 2i2 − 2i · n+ n− 2

2
) = (4, 6) for i = 1, n = 4 (3.9)

for the four dimensional (1, 3) metric of greatest physical interest with one tem-
poral and three spatial dimensions. Naturally, this would work equally well for
a cosmetic shift to the (3, 1) sector, but we are treating the 3-spatial and 1-
temporal dimension as anthropically determined in either case and would imag-
ine that the other sectors carry physical reality disconnected from our sector.
2

3.2 The Chimeric Bundle

We now define two metric bundles which, with the above assignments, are canon-
ically isomorphic:

C(Y ) = C = V ⊕H∗ C∗(Y ) = C∗ = V ∗ ⊕H (3.10)

where each of these Chimeric bundles may be thought of as ‘semi-canonically’
equivalent to the Tangent and Co-Tangent bundles according to:

C∗

↗ ↘
T T
↑ ↓
T ∗ T ∗

↖ ↙
C

(3.11)

as one way of formally linking two short exact sequences.
These bundles C = C(Y ) and C∗ are distinguished by the fact that they

are (semi-canonically) isomorphic to the tangent bundle in the case of C and

2NB: This choice is one of the few non-forced choices allowed in the strong form of GU.
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the co-tangent bundle in the case of C∗ and possess natural metrics. Because
the fibers at a point g ∈ Y impart metrics to to the vertical Vg and horizontal
sub-bundles H∗g , taking those sub-spaces to be orthogonal to each other allows
for two different choices of metric to be inherited by their direct sum according
to choices of sign.

3.3 Topological and Metric Spinors

What then is the purpose of defining bundles that are isomorphic to T and T ∗

but with only part of that isomorphism being canonical?
The answer lies in the paradox of Spinors. While the Dirac operator may

well carry topological information that is not metric, it is usually impossible to
define a natural finite dimensional bundle of spinors on Xn in the absence of a
metric, even when one can lift the General Linear group to its connected two-
fold double cover G̃L(N,R), due to the absence of finite dimensional fractional
spin representations.

By passing to Y d however, we can do somewhat better by virtue of the fact
that spinor representations carry an exponential property. That is, the spinor
functor converts direct sums of vector spaces as input into tensor products of
spinor representations as output:

/S(Wa ⊕Wb) ∼= /S(Wa)⊗ /S(Wb) (3.12)

At the bundle level, we apply this to the metric Chimeric Bundle at a point
g ∈ Y to obtain:

/Sg(C) ∼= /Sg(V ⊕H
∗) ∼= /SFrobeniusg

(V )⊗ /Sg(H
∗
π∗(π∗(g))

) (3.13)

which gives spinors defined for the metric endowed C = C∗ without making a
choice of metric on Y .

This is important for several reasons. In the first place, we have defined a
Spin Bundle for the chimeric bundle C(Y ) which is semi-canonically isomorphic
to metric bundles of spinors on TY . Thus at the cost of replacing X with the
total space of a natural bundle over it, we have come rather close to defining
spinors without a choice of metric via maps:

TY
↗ ↘

0 −→ C ⊕ C∗ −→ 0
↘ ↗

T ∗Y

(3.14)

More importantly, we must have in the back of our minds that we are ultimately
going to have to harmonize gravitation and the metric with fractional spin Fermi
fields which depend on that tensor for their existence. This construction allows
us to work with one single bundle of spinors even when there is no choice of
metric. When a metric is chosen below on X compatibly with V and H, the
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Chimeric bundle and Tangent are given a natural isomorphism via the Levi-
Civita connection

/S(V )⊗ /S(H)︸ ︷︷ ︸
Topological Spinors

−→ /S(T ) = /S(T ∗)︸ ︷︷ ︸
Metric Spinors

(3.15)

telling us how the Horizontal bundle H maps into TY . This in turn clears
the way to allow us to later consider quantum Fermi fields which usually carry
metric bundle dependence between invocations of metric tensors.

3.4 Reversing The Fundamental Theorem: The Zorro Con-
struction

According to the fundamental theorem of Riemannian Geometry, every Rieman-
nian or (semi-Riemannian metric) induces a unique metric compatible torsion
free Levi-Civita connection on its tangent bundle.

As we have two spaces, X,Y , this is equally true both above and below in
our construction of the Observerse:

Metrics Connections

On X ג −→ ℵג

On Y g −→ Ag

(3.16)

However, what is necessary to split the cyclic long exact sequence of maps
between T and T ∗ is in fact a connection on the space Y viewed as a bundle
over X. By reversing the usual logic somewhat and linking these two maps, we
get a train of transmission where a metric choice below on X leads ultimately
to the choice of a connection above over Y :

Metrics Connections

On X ג −→ ℵג
↙

On Y gℵ −→ Ag

(3.17)

The importance of this is that each observation of Y via a choice of metric ג on
X actually induces a metric and connection on Y identifying the Topological
spinors with the metric spinors. This allows us somewhat more confidence to
explore the idea that metrics are not even necessarily present on Y unless when
observed where the act of observing under pull back .∗ג Further, if the problem
with much of quantum gravity turns out to be the difficulty of quantizing metrics
relative to other fields such as vector potentials, this excercise allows us to
move to more conducive variables for those who harbor dreams of quantizing
gravitation.
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It should be pointed out here that most possible metric on Y are never
in play. The subset of metrics that we are considering are incredibly tightly
constrained and are equivalent to the space of connections that can arrise on X
as Levi-Civita connections, as opposed to the space of all metrics over Y . Thus
the issue of what upstairs gravity waves are possible doesn’t arise as the space
of relevant fields is downstairs on X.

3.5 Chimeric Spinors and Heterogeneous Spin Bundles.

Now that we have abstractly defined spinor bundles on Y , it behoves us to
understand what kind of spinors we may have coaxed into existence.

We should begin by noting that the choice of (1, 3) metric signature (which
can be mirrored by choice of a (3, 1) and thus is not meaningfully distinguished
from it) is treated by us as anthropic data. If it were otherwise, there would
likely be no life to evolve to observe these structures. This recognition, forces
a (3, 6) signature on the space of traceless symmetric two tensors which, when
combined with the trace portion seen as either a (0, 1) or (1, 0) space, can
become either a (3, 7) or the (4, 6) metric respectively. Here again, we make an
anthropic choice and select the latter of the two for two reasons. In the first
place, we believe that (3, 7) will not be compatible with the observed forces and
symmetries of the Standard Model. Secondly, we want to leave ourselves room
for complex techniques and view a real (4, 6)R structure as holding the door
open for some models we have been playing with favoring reduction to (2, 3)C.

Lastly we must combine these choices of fiber metrics in Y with metrics
pulled up from the base space of signature (1, 3). These combinations in turn
could lead to (4, 10) or (8, 6) in the discarded former cases of (7, 3) or (3, 7),
or (5, 9) or (7, 7) in the case of the latter (4, 6) or (6, 4). We do not know how
to choose between these however as this is one of the few places in the model
where choices are made that are not yet forced.

To begin with, we will assume that the metric on Y is split with signature
(7, 7) (rather than (9, 5) which can be worked out by the interested reader) as
it is more balanced and appears to lend itself better to both some complex and
Clifford Algebra techniques.

Here the split signature Clifford algebra is of Real type and is equivalent to
Real 128 square matrices with some additional structure:

Cl7,7 ∼= R(128) (3.18)

This in turn leads to representations for the Spin group of the form:

Spin(7, 7) −→ SO(64, 64) −→ U(64, 64) (3.19)

so in full generality, all spin representations in (7, 7) signature are subsumed by:

ρSpin : Spin(14,C) −→ U(128,C) (3.20)

The additional structure on these matrix algebras gives them a transpose
operation from combining the canonical automorphism of the Clifford algebras
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(by replacing the generating tetrad with its negative) and the canonical anti-
automorphism gotten from reversing the order of basis factors within the various
Clifford products.

This leads to concrete models for a number of Lie algebras at the level of
Clifford Algebras as in:

so(7, 7) “ = ” Λ2 ⊂ ClR(7,7) (3.21)

gl(64,R) “ = ” (Λ2 ⊕ Λ6 ⊕ Λ10 ⊕ Λ14) ⊂ ClR(7,7) (3.22)

As the Left and Right real Weyl spinors transform as 64-dimensional dual defin-
ing representations under the General Linear group GL(64,R), we can form a
metric on the space of total Majorana Spinors

/SR = /S
L
R ⊕ /S

R
R = /S

L
R ⊕ (/S

L
R)∗ (3.23)

according to
< ψL + ψR, σL + σR >= ψL(σR) + σL(ψR) (3.24)

giving us a split signature metric in which both spaces of Weyls spinors are null
as for Weyl Spinors we have:

Structure Group︷ ︸︸ ︷
Spin(7, 7) −→

Weyl-Left︷ ︸︸ ︷
Gl(64,R)+×

Weyl-Right︷ ︸︸ ︷
Gl(64,R)− −→

Dirac︷ ︸︸ ︷
Gl(128,C) (3.25)

The metric for the total Majorana spinors corresponds to the Lie Algebra:

so(64, 64) “ = ” (Λ2 ⊕ Λ6 ⊕ Λ10 ⊕ Λ14)︸ ︷︷ ︸
/SL⊗/SR=/SL⊗/S

∗
L=/S∗R⊗/SR

⊕ (Λ1 ⊕ Λ5 ⊕ Λ9 ⊕ Λ13)︸ ︷︷ ︸
Λ2(/SL)⊕Λ2(/SR)

⊂ ClR(7,7)

(3.26)
corresponding to the non-compact real group Spin(64, 64) ⊂ ClR(7, 7).

In order to move from Orthogonal to Unitary representations3, we pass to
the Clifford Algebra ClC(7, 7)

u(64, 64)“ = ”

3⊕
i=0

Λ4i+2
3⊕
i=0

iΛ4i
3⊕
i=0

Λ4i+1
2⊕
i=0

iΛ4i+3 ⊂ ClR(7,7) ⊗ C (3.27)

corresponding to the Lie Group H = U(64, 64), where the ‘adjoint’ operation
in the Clifford Algebra is given by the operation of composing the canonical
automorphism with the reversal of order of all basis vectors.

By exponentiation we arrive at a unitary representation

ρDiracC : Spin(7, 7) ↪→ U(64, 64) (3.28)

of the Spin group into a space of unitary Dirac Spinors whose corresponding Lie
Algebra is in canonical correspondence with the exterior algebra inside ClC(7, 7).

3This decomposition was taken from a decades old file and should be checked by someone
more current on their “Clifford Checkerboard” yoga as it did not come with a description.
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3.6 The Main Principal Bundle

We have always found the byzantine intricacies of Clifford Algebras confusing
and an attempt to recollect the various containments just discussed is offered
here:

Gl(128,C)
↗ ↖

U(64, 64) GL(128,R)
↖ ↗ ↖

O(64, 64) GL(64,R)L ×GL(64,R)R
↖ ↗

Gl(64,R)
↑

Spin(7, 7)
(3.29)

where we are privileging one particular path up the diagram that contains the
metric and unitary representations:

Spin(7, 7) −→ SL(64,R) −→ SO(64, 64) −→ U(64, 64) −→ GL(128,C) (3.30)

It is now our aim to specify the main principal bundle in finite dimensions
with which we will be working.

For the rest of this exposition, we will let %Dirac = %D be the representation

%Dirac = %D : Spin(7, 7) −→ U(64, 64) (3.31)

on complex Dirac Spinors using the notation H = U(64, 64) in what follows.4

Our main object of focus, will be taken to be:

PH = PF̃r(C7,7) ×%D H (3.32)

where PF̃r(C7,7) is the double cover of the frame bundle of the Chimeric bundle.

PH ←↩ U(64, 64)
π ↓
Y 7,7 ←↩ G̃L(4,R)/Spin(1, 3)
π ↓
X4

(3.33)

with the associated bundles:

ad = ad(PH) = PH ×ad u(64, 64) = PH ×ad h (3.34)

Ad = Ad(PH) = PH ×Ad U(64, 64) = PH ×Ad H (3.35)

/S = PH ×%D C64,64 = PH ×%D /S (3.36)

4Note: The symbol H is being used to denote two different objects. A group and a
horizontal vector space. This is unfortunate and may be rectified in future drafts.
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Now the important thing to notice about this construction is that while it looks
geometric in nature due to the presence of Spin groups and representations, it
is in fact purely Topological as no metric has been chosen. In fact, all that has
been chosen is the signature of a (1, 3)-metric and one can avoid even this by
working over all 5 distinct sectors {(i, 4− i)}4i=0 on X4 and merely noting that
we happen to appear to exist within one of them carrying a Lorentz signature
by anthropic reasoning.

We may fairly ask what a topological /S(CY ) Spinor looks like when ‘ob-
served’ from X4. The concept of an observation is of course built into the
definition of the Observerse as a map ι observing Y from X via pullback.

ι : U −→ Y U ⊂ X4 (3.37)

and so here is naturally given by a section over a local neighborhood U ⊂ X
when Y fibers over X. Thus we have:

/SPH ←↩ C64,64

π ↓
Y 7,7 ←↩ G̃L(4,R)/Spin(1, 3)

π ↓↑ ιU
U4

(3.38)

where the key to understanding the topological spinors from the perspective of
U ⊂ X observing Y via ι is worth disentangling due to the multiplicity of roles
played by ιU .

In the first place ιU is a local immersion as well as a section so it constitutes
an embedding of X into Y seen as an ambient space. As such, it pulls back
all bundles over Y just as it pushes forward the tangent bundle of U ⊂ X
in non-degenerate fashion. When it pulls back the Tangent Bundle TY as an
embedding, it splits via:

ι∗(TY ) = TU ⊕Nι = TU ⊕ TY/ι∗(TU) (3.39)

where Nι is the normal bundle of the observation. But the act of observation
also gives a splitting of the long exact sequence from before over U ⊂ X:

. . . � T � T ∗ � T � T ∗ � . . . (3.40)

Including this splitting into the earlier large commutative diagram

0 0 0 0
↓ ↑ ↓ ↑

. . . ↔ V V ∗ ↔ V V ∗ ↔ . . .
↓ ↑ ↓ ↑

. . . � T � T ∗ � T � T ∗ � . . .
↓ ↑ ↓ ↑

. . . H ↔ H∗ H ↔ H∗ . . .
↓ ↑ ↓ ↑
0 0 0 0

(3.41)
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we start to see the full effect of a choice of ι, as it simultaneously plays the
following roles:

• Observer as a generator of pullback data via ι∗.

• Ambient Embedding generating a Normal Bundle Nι.

• (Downstairs) Metric as a section of the bundle of metrics.

• Splitting of the long repeating sequence.

• Connection as can be seen as being determined via either the Zorro
diagram, the Levi-Civita Construction, or the splitting diagram above.

• (Upstairs) Metric Via the Zorro diagram.

• Isomorphism generator:

C = C∗ = TY = T ∗Y V = V ∗ = Nι = N∗ι H = H∗ = TX = T ∗X
(3.42)

so that its introduction has a fairly violent effect in moving us from topology
to true geometry. Curiously, it is the only primary field in the theory that is
truly native to X. As such we will use Hebrew letters gimel (ג) and aleph ℵ and
denote our immersion ι in the Einsteinian Observerse by ι = ג and its associated
connections by ℵג to remind ourselves of the separation between fields native to
X and those arising naturally on Y .

4 Topological Spinors and Their Observation

The appearance of topological spinors may then finally be interrogated under
observation by .∗ג Let x ∈ U ⊂ X be a point in the neighborhood of a local
observation Uג .

If ΨגU (x) ∈ /S(C) is a topological spinor, then under an observation by ∗ג on
X it will appear as

ΨגU (x) ∈ /Sx(TX)︸ ︷︷ ︸
Space-Time Spinors

⊗ /Sx(Nג(x))︸ ︷︷ ︸
‘Internal’ Quantum Numbers

(4.1)

so that an observer may be lead into error. While the topological spinor under
observation is not generated by any algebraic auxiliary data unconnected to X,
it is quite likely to appear as if it contains auxiliary internal quantum numbers if
the observer is unaware of the Observerse structure involving Y , as the pull back
fields via ∗ג would have the false appearance of being native to X. A tell tale
sign that one might be looking at such a unified structure with a single origin in
X would be the presence of a power of 2 in the dimension count of the auxiliary
quantum numbers for /Sx(Nג(x)). Specifically, on an even dimensional manifold
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of signature (i, j) = n we would expect to see internal quantum numbers of
dimension

Dim( /Sx(Nג(x))︸ ︷︷ ︸
‘Internal’ QN

) = 2
i2+j2+2ij+i+j

4︸ ︷︷ ︸
Dirac

or 2
i2+j2+2ij+i+j−4

4︸ ︷︷ ︸
Weyl

(4.2)

depending on whether the theory was non-chiral (Dirac) or either effectively or
fundamentally chiral (Weyl). In particular, we might expect the later in regions
U ⊂ Xi,j where gravity and curvature are weak and the former where they are
strong and resistant to effective decoupling. And, to our way of thinking,

2
i2+j2+2ij+i+j−4

4︸ ︷︷ ︸
Weyl

= 2
12+32+2∗1∗3+1+3−4

4 = 16C (4.3)

this, with a doublet of charged and uncharged leptons together with a tri-colored
positively charged quark and its negatively charged weak isospin doublet part-
ners along with the anti-particles of all the preceding, appears to be exactly
what we see repeated over three apparent low energy families.

Lastly, we note from personal communication that Frank Wilczek appears
to have wondered about the spinorial coincidence (even in print), but did not
find it compelling enough to pursue beyond noting its existence and the lack of
incorporation within a physical framework. It is our hope that recognizing that

Figure 3: Wilczek On Internal Spinors.

the ‘10’ implicit within both the Georgi-Glashow and Pati-Salam theories may
be tied to the 10 coupled equations of General Relativity may be considered
compelling.

4.1 Maximal Compact and Complex Subgroup Reductions
of Structure Group

Assume for the moment that we have a global observation:

ג : X −→ Y (4.4)
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or, in our case, simply that we have a given metric on X. The push-forward
map induced on the tangent bundle TX given by

Dג : TX −→ TY (4.5)

splits the tangent bundle on Y along (X)ג ⊂ Y into the image of Dג and its 10
dimensional complement V 10 along the fiber of metrics for every x ∈ X. This
creates an identification with the chimeric bundle C = V10 ⊕H∗4 as the vertical
piece is already a subset of both TY and C by construction, and Im(Dג) =
(H4

∗(xג

Having seen that the natural break down of our Chimeric Spin(7, 7) bundle
under observation leads to a decomposition into tangent and normal compo-
nents of dimensions 4 and 10 respectively, it is natural to ask what reductions
of structure group are most natural to expect. Two immediately suggest them-
selves.

Given any normal bundle that is even dimensional, there is a natural question
as to whether it admits a complex or quaternionic structure. Here the dimen-
sion 10 being equal to 2 mod 4 suggests seeking a complex structure through
reduction of structure group to U(3, 2) ⊂ Spin(6, 4).

Conversely, given the non-compact nature of Spin(6, 4) it is natural to won-
der whether the structure group breaking to a maximal compact subgroup with
better stability behavior is advantaged. Thus while non-compact groups are
certainly considered from time to time, if the subgroup was broken to a max-
imal compact sub-group, we would be anthropically screened from seeing how
nature accommodates non-compact symmetry and thus without guidance as to
how to find a theory which extends to the general case.

To this end, we might also consider both reductions simultaneously and ask
how a reduction to a maximal compact subgroup would appear if it were accom-
panied by a simultaneous reduction to accommodate a 5 complex dimensional
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normal bundle. Starting from Spin(1, 3)× Spin(6, 4)

Observerse︷ ︸︸ ︷
Einstein︷ ︸︸ ︷

Space-Time︷ ︸︸ ︷
Spin(1, 3)×

Frobenius︷ ︸︸ ︷
Traceless︷ ︸︸ ︷

Spin(6, 3)×
Trace︷ ︸︸ ︷

Spin(0, 1) −→
Horizontal︷ ︸︸ ︷
Spin(1, 3)×

Vertical︷ ︸︸ ︷
Spin(6, 4) −→

Chimeric︷ ︸︸ ︷
Spin(7, 7)

∪
Spin(1, 3)× Spin(6)× Spin(4)︸ ︷︷ ︸

Maximal Compact

∼=

Sl(2,C)× SU(4)× (SU(2)× SU(2))︸ ︷︷ ︸
Pati-Salam

(Via Low Dimensional

Isomorphism)

∪
Sl(2,C)︸ ︷︷ ︸

GR

×SU(3)× SU(2)×U(1)︸ ︷︷ ︸
Standard Model

(4.6)
where the Standard Model group is found within the intersection of the simul-
taneous reductions up to a reductive factor of U(1) if the special unitary group
SU(3, 2) is not privileged over the full unitary group U(3, 2) to begin with.

4.2 Pati-Salam

One way of looking at all of this is as a geometric setting for Grand Unified
theories. While the Georgi-Glashow model of SU(5) and its associated Spin(10)
enlargement may be more popular, the Pati-Salam model is no less attractive
when presented differently. In the usual presentation of the Pati-Salam grand
unified theory, the groups are given as SU(4) × SU(2) × SU(2) which suffers
from ambiguities. To begin with, there are no fewer simple factors in Pati-Salam
theory than there are reductive factors in the Standard Model. Further, there
is the naming ambiguity as we have many names for the same objects:

SU(2) = Sp(1) = S3
H = Spin(3) (4.7)

However, if we accept that non-compactness is the price generally to be
paid in any unified theory that incorporates both space and time, we should
expect reduction to non-compact groups5 whose maximal compact subgroups

5We, years ago, remember following such reductions along the lines of Bar-Natan and
Witten which involve incorporating an endomorphism of the non-compact complements into
to the Hodge Star operators but have yet to successfully resurrect the technique, nor have
we found our notes for this period. Such problems of reconstruction over nearly 40 years
are, lamentably, found throughout this document but they are likely to get worse rather than
better by waiting to fix them. For those sensitive to errors of this type we recommend waiting
for a future draft.
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will always be Semi-simple or at least reductive. Thus, we view the semi-simple
nature of Pati-Salam paradoxically as more of a blessing than curse given that we
are trying to generate quantum numbers from the anthropic choice of Spin(1, 3)
which ensures the existence of hyperbolic PDE dynamics unspoiled by ellipticity.

To this end we have:

(hSU(3)QCD
, gWI , αWH) −→ (4.8)

Pati-Salam Grand Unified Group︷ ︸︸ ︷
(

 α · h 0

0 α−3


SU(4)︸ ︷︷ ︸

Spin(6)

,

 g


SU(2)L

,

 α3 0

0 α−3


SU(2)R︸ ︷︷ ︸

Spin(4)

)

where we have made use of the low dimensional isomorphism SU(4) = Spin(6)
which can be best understood through the study of sphere transitive Weyl spin
representations via Clifford Algebras.

As for the SU(2)×SU(2) factors, we see that it is most advantageous to view
this via low dimensional isomorphism with Spin(4) so as to obtain the following
diagram:

Spin(10,C)
↗ ↖

Spin(6, 4) Spin(10)
↑ ↖ ↗ ↑

SU(3, 2)

Pati-Salam︷ ︸︸ ︷
Spin(6)× Spin(4)

Georgi-Glashow︷ ︸︸ ︷
SU(5)

↖ ↑ ↗
SU(3)× SU(2)×U(1)

(4.9)

indicating that the appearance of a phantom 10-dimensional representation is
common to both the Georgi-Glashow and Pati-Salam theories and strongly sug-
gests looking for a fundamental explanation. One disadvantage on finding one-
self on the Pati-Salam branch of the above tree, is that it suggests non-compact
groups bigger than itself which are difficult to accommodate in unitary Bosonic
theories with bounded energy. An advantage however is that it does not lead
immediately to proton decay like the original SU(5) model of Georgi-Glashow.
Further, by privileging both a compact structure group within Spin(6, 4) and
a complex structure on the phantom 10-dimensional representation, the Stan-
dard Model group appears to be very close to being at the intersection of those
requirements.
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5 Unified Field Content: The Inhomogeneous
Gauge Group and Fermionic Extension

Up until now we have been dealing with finite-dimensional constructions that
superficially appear to be geometric (e.g. spinorial), but are actually mostly
topological in nature. In this section we focus on the field content of GU which
brings us to infinite dimensional algebraic constructions.

5.1 Field Content

In what follows, we endeavor to list the field content of Geometric Unity. The
major nuance here is that the fields live on separate spaces which is kept track
of by having only two fields on X with Hebrew orthography. All other fields
live on Y and carry Greek orthography.

5.1.1 Field Content Native to X

In everything that follows, we will endeavor to separate out all field content
native to X by having it appear with Hebrew Letters. There is a single primary
field ג native to X which is a section of the metric bundle Y (X) as well as a
derived field ℵ = ℵג representing the Levi-Civita connection across all bundles
on which it is induced from the metric .ג

5.1.2 Field Content Native to Y

There is a single unified field ω native to Y . Here our interpretation of Unified
field is interpreted to mean unified in an algebraic sense of indecomposible.

With that said, we should say at the outset that ω is comprised of interlock-
ing sub-sectors:

ω = (β, χ) = (

(Naive)6 spins on Y︷ ︸︸ ︷
(

0︷︸︸︷
ε , (

1︷︸︸︷
$ )︸ ︷︷ ︸

Bosons β

, (

1
2︷︸︸︷
ν ,

1
2 ,

3
2︷︸︸︷
ζ )︸ ︷︷ ︸

Fermions χ

) (5.1)

Of the four sub-component fields, only one, ε is non-linear at the level of
topological spaces. Letting ε̄ denote its linearization, the four components fit
neatly within the following simple table of tensor products:

(Linearized) Field Content on Y:

⊗ ad /S

Ω0
Y ε̄ ν

Ω1
Y $ ζ

(5.2)

It is the contention of the author that since the introduction of Special
Relativity in 1905, Physicists have become dependent on affine space techniques
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for their understanding of relativistic mechanics as well as both classical and
quantum field theories. While space-time has obviously not been considered flat
since Einstein and Grossman first introduced General Relativity in 1913, we are
rather more sympathetic to the emphasis on affine space than our frequent
irritation with excuse making for Minkowski space techniques might suggest.

Simply put, we see affine physics as being central to our understanding of the
world and requiring no excuse making, but believe that the culture has chosen
the wrong affine space and dimensionality for its emphasis given the presence
of gravity.

The simple principle we follow here is that we should implement on the
affine space of connections what we are otherwise tempted to do on flattened
space-time. To this end we set notation.

5.2 Infinite Dimensional Function Spaces: A,H,N .

The so-called Gauge Group of automorphisms of PH is defined to be:

H = Γ∞(PH ×Ad H) (5.3)

where the space of connections for PH

A = Conn(PH) (5.4)

is an affine space modeled on the right H-module

N = Ω1(Y, ad(PH)) (5.5)

which carries a right action of the group

A×H −→ A (5.6)

so that the affine difference map

δ : A×A −→ N δ(A,B) = A−B ∈ N (5.7)

is an H-equivariant map of right H-spaces.

5.3 Inhomogeneous Gauge Group: G
The reliance on affine Minkowski Space together with its Lorentz and Poincare
symmetry groups is somewhat curious in the presence of General Relativity.
Yet given the success of analysis on affine space we are given to speculate that
fundamental physics may in fact be reliant on an affine space as more than an
approximation or pedagogical aid.

The gauge group H can be augmented (in analogy to the Lorentz Group
SL(2,C) to become a subgroup of its own natural inhomogeneous extension.
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Definition 5.1 The Inhomogeneous Gauge Group G is defined (in analogy
to the Poincare group) to be the semi-direct product

G = HnN (5.8)

of the gauge group H with the space of ad-valued one-forms N = Ω1(ad(PH))
viewed as a right H-module, so that the explicit group multiplication rule:

g1 · g2 = (ε1, $1) · (ε2, $2) = (ε1 · ε2,Aut(ε−1
2 , $1) +$2) (5.9)

for all εi ∈ H and $j ∈ N defines the semi-direct product structure.

5.4 Natural Actions of G on A.

Having defined a new group augmenting the usual gauge group, it is worth
noting that the actions of H on the space of connections A extend naturally to
the new group G incorporating the additional inhomogeneous affine translations
N .

5.4.1 Right Action by G on A

This inhomogeneous gauge group G can be seen as acting naturally on the right
on the space of gauge potentials or connections A via

A · g = A · (ε,$) = A · ε+$ (5.10)

extending the usual right action A  A · ε of an element of the gauge group
ε ∈ H on an arbitrary connection A ∈ A.

5.4.2 Left Action by G on A

We also have a left action of G on A via

g ·A = (ε,$) ·A = (A+$) · ε−1 (5.11)

extending the left action A  A · ε−1 gotten from the usual right action of H
applied to the inverse element ε−1 ∈ H.

5.5 Fermions and SUSY

Super-symmetry has a curious status within both Mathematics and Physics. It
is both incredibly natural by some measures, as well as being rather artificial
by others. It is not a true symmetry, its ‘integrals’ are not real integrals, and
its ‘dimensions’ are not true dimensions. Nevertheless, the dictionary between
Bosonic and Fermionic constructions is astounding (at least to us). This is
interpreted by the author as consistent with a signature of a problem where
Super-symmetry is likely very important but somehow thoroughly misinstanti-
ated by its often fanatical proponents compensating for its failure to materialize
in any physical experiment.
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If super-symmetry is taken to be natural, then surely so-called super-space is
its most natural representation by an action. Here, it seems that affine nature of
Galilean transformations gives us an interpretation for super-symmetric charges
as the square roots of affine translations.

Yet, knowing that Minkowski space is simply an approximation to non-affine
spaces is somewhat discouraging if we are to build an entire theory that leans
so heavily on flat translations when both non-trivial geometry and topology
threaten to significantly complicate the picture. By contrast, the affine space of
gauge potentials is intrinsically affine in nature no matter what the geometry
and topology are on which those potentials live. This is why we find it more
appealing to see Fermionic ν and ζ as potential square roots of the as-if Galilean
group N = Ω1(Y, ad). This is also theoretically appealing as the concept of
electrons and positrons being some kind of square roots of photons is potentially
very appealing given the role of Feynman diagrams in perturbation theory. The

Figure 4: ”Is the Electron a Square Root of a Photon?”

general rubric here is that expressions like (ν̄ · ζ) can be given meaning directly
as elements of N while expressions like ζ̄a · ζb are harder to directly interpret as
translations without more machinery as they do not initially land in the proper
space N and would have to be moved in gauge-covariant fashion.

We may return to this in future work but do not wish to say much more as
the subject of modern SUSY is rather delicate given the steadfast failure of its
predicted space-time superpartners to materialize. We note however that the
zoo of sleptons, squarks, gluinos and the like are all based on internal symme-
try remaining the same and space-time symmetry changing spin. In a theory
such as GU, there is no internal symmetry. Ergo, the (infinite dimensional)
superpartners would not need to have the same internal quantum numbers any-
more than they would need to carry the same space-time spins. This asks the
question: if the universe is GU like rather than Standard-Model like, are the
superpartners we seek already here and based on an affine space different from
space-time with no-internal symmetry of which to speak?

5.6 Relationship of the Inhomogeneous Gauge Group to
Standard Analysis

A brief digression is in order to relate what we are doing to the standard analysis
of gauge potentials under gauge symmetry. To begin with, the usual object
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of study in quantum field theory is the space of connections modulo gauge
equivalence, or:

A/H (5.12)

in our notation.
This is equivalent, at an initially irrelevant level, to the expression

A/H = (H×A)/(H×H) (5.13)

by Cartesian product with a second copy of the gauge group in both numerator
and denominator.

But by the choice of a connection A0 we have A = N as our affine space
now has an origin while we note that the Semi-direct product of topological
groups is set theoretically a product of the underlying spaces if not exactly at
the algebraic level. Thus we have:

A/H = (H×A)/(H×H) = (HnN )/(H×H) = G/(H×H) (5.14)

= (G/H)/H

and our investigations in this area are an analysis of the numerator quotient in
this context.

6 The Distinguished connection A0 and its con-
sequences.

All of the preceding is general and did not depend on the choice of any particular
connection. However, besides the ability to contract and project within the
Einstein-Riemann paradigm, the secondary benefit we have discussed is the
existence of a distinguished Levi-Civita connection.

It is worth briefly recalling how this connection comes into being by sum-
moned from the choice of metric. Let g ∈ Γ2(S2(T ∗)) be a metric on the
tangent bundle of a manifold M . Then if β ∈ Ω1(T ∗) is a one form on M and
g̃ ∈ Γ2(S2(T )) is the dual metric, then

∇gβ = dβ︸︷︷︸
Λ2(T∗M)

⊕ Lg̃β(g)︸ ︷︷ ︸
S2(T∗M)︸ ︷︷ ︸

T∗M⊗T∗M

∈ Ω1(M,T ∗) (6.1)

or, in other words, the exterior derivative is already half of a connection. To
get the other half, we use the remaining naturally occurring derivative (the Lie
derivative L(g)) to Lie differentiate a symmetric two tensor. The main trick,
however is that the metric is actually used twice, as the Lie derivative requires
a vector field to pick a direction. And since we are operating on a 1-form β. we
must turn it into a vector field using the same metric that is to be differentiated.
As such, the Levi-Civita connection is summoned via the Lie derivative’s ability
to complement the exterior derivative and provide its missing half.
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We now assume, however, that there is a distinguished choice of connection
A0 (such as that which we have just constructed for a given metric), which has
been made and can be utilized in what follows. In our case, we begin with a
metric ,ג which determines a connection Aleph ℵג on the bundle TX. At that
point, the connection ℵ determines a metric gℵ on TY given the metric data
already present on the horizontal and vertical tangent sub-bundles HY and VY .
This, in turn, determines a Levi-Civita connection ∇gℵ = ∇0 which, by abuse
of notation, we will consider as determining a spin connection on the structure
bundle PH of Dirac spinors over Y . When we have temporarily fixed a given
metric ג on X giving rise to this spin connection on Y , we will refer to the
connection as A0 ≈ ∇0 ≈ d0 as needed and when the possibility of confusion is
likely resolved by context.

As a preliminary note, we remind ourselves that the choice of a distinguished

connection results in a canonical isomorphism A
A0∼= N giving us an action of G

on N induced from the right action of G on A. Thus, if a connection A ∈ A is
expressed relative to a base connection A0 as A = A0 + α, we now have a right
action of G on N which can be expressed via the explicit formula:

α · g = α · (ε,$) = ε−1(α)ε+ ε−1(dA0
ε) +$ (6.2)

on the space of connections A.

6.1 The Tilted Map τ into G: the Homomorphism Rule

Lemma 6.1 Given a base connection A0 ∈ A, the map

τA0 : H −→ G (6.3)

given explicitly by

τA0
(h) = (h, δ(A0, A0 · h)) = (h,A0 −A0 · h) = (h,−h−1(dA0

h)) (6.4)

is an injective Lie Group homomorphism. 7

Proof: The map is clearly injective because it is the identity map onto and
into the first factor in the semi-direct product. To see that it is a Lie-group
homomorphism, we argue that:

τA0
(h1 · h2) = (h1 · h2,−(h1 · h2)−1(dA0

(h1 · h2))) (6.5)

= (h1 · h2,−((h−1
2 · h

−1
1 )((dA0

h1) · h2 + h1 · (dA0
h2)))

= (h1 · h2,−(h−1
2 · (h

−1
1 (dA0h1)) · h2 + h−1

2 · (dA0h2))

(h1,−h−1
1 (dA0h1)) · (h2,−h−1

2 (dA0h2)) = τA0(h1) · τA0(h2)

7There appears to have been multiple sign conventions and some notational shifts within
the files from which this section was reassembled. We will endeavor to sort this out but there
may be 2 or more conflicting convetions in this section.
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QED.

This subgroup τA0
(H) ⊂ G is important to our constructions and thus war-

rants a name to distinguish it from the more obvious H subgroup.

Definition 6.2 The image of H inside G under τA0 will be referred to as the
The Tedha8 Gauge Group HτA0

inside G, with the image of H simply in-
cluded onto the first factor of G and sent to 0 in the second factor being referred
to as the Trivial or Seedhe Gauge Group to avoid confusion.

6.2 Stabilizer Subgroup

If we act on the space of connections using the natural right action of the
inhomogeneous gauge group G we may ask what the stabilizer subgroup is for
the Levi-Civita spin connection A0. To this end, solving for g ∈ G stabilizing
A0 we have:

0 = A0 · g −A0 = A0 · ε+$ −A0 = (A0 + ε−1 · d0ε+$)−A0 (6.6)

implying
$ = −ε−1dA0

ε (6.7)

so that the flipped τ̂ map:
τ̂0 : H −→ G (6.8)

given by:
τ̂0(h) = (h,−h−1d0h) (6.9)

provides a parameterization.

6.3 G as Principal bundle: Action by Tilted Gauge Trans-
formations Rule

The choice of a base connection A0 determines a surjection

πA0 : G −→ N (6.10)

given by
πA0

(g) = πA0
((ε,$)) = ε$ε−1 + (dA0

ε)ε−1 (6.11)

which can be taken to be the projection map in the homogeneous principal
H-fibration:

H ↪→ PH = G
↓ πA0

B = G/HτA0
= N

(6.12)

determined by the right action of H as tilted subgroup on G

g · τA0
(h) = (ε,$) · τA0

(h) = (ε · h, h−1$h− h−1(dA0
h)) (6.13)

via the τA0
homomorphism.

8This is transliterated Hindi for slanted or crooked and got stuck in the author’s head
many years ago via his wife’s usage. Seedhe means straight by the same token.
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Lemma 6.3 The map πA0 , is the projection map for the natural right action
of τA0(H) on G.

Proof:

πA0
(g ·τA0

(h)) = πA0
((ε,$) ·(h,−h−1dA0

h)) = πA0
((ε ·h, h−1 ·$ ·h−h−1dA0

h))
(6.14)

= (ε · h)(h−1$h− h−1dA)
h)(ε · h)−1 + (dA0(ε · h))(ε · h)−1

= (ε·h·h−1$h·h−1·ε−1−ε·h·h−1dA)
h)·h−1·ε−1+((dA0

ε)·h))·h−1·ε−1+(ε·dA0
(h)))·h−1·ε−1

= ε ·$ · ε−1 − ε · (dA)
h) · h−1 · ε−1 + (dA0

ε) · ε−1 + ε · (dA0
h) · h−1 · ε−1

= ε ·$ · ε−1 + (dA0ε) · ε−1 = πA0((ε,$)) = πA0(g)

As a benefit of this homogeneous principal fibration, we also gain a left action
of G on B = N via

Lemma 6.4 The rule

g · γ = (ε,$) · γ = ε($ + γ)ε−1 + (dA0
ε)ε−1 (6.15)

determines a left group action of G on N .

Proof: The lemma can be seen from direct application of the preceding discus-
sion and rules:

(g1 · g2) · γ = ((ε1, $1) · (ε2, $2)) · γ = (ε1 · ε2,Aut(ε−1
2 , $1) +$2) · γ (6.16)

+(ε1 · ε2)(Aut(ε−1
2 , $1) +$2 + γ)(ε1 · ε2)−1 + (dA0

(ε1 · ε2))(ε1 · ε2)−1

= ε1 ·ε2 · ((ε−1
2 ·$1 ·ε2)+$2 +γ) ·ε−1

2 ·ε
−1
1 +((dA0

ε1) ·ε2 +ε1 · (dA0
ε2)) ·ε−1

2 ·ε
−1
1

= ((ε1·$1·ε−1
1 )+ε1·(ε2·$2·ε−1

2 )·ε−1
1 +ε1·(ε2·γ·ε−1

2 )·ε−1
1 −(dA0

ε1)·ε−1
1 −ε1·((dA0

ε2)·ε−1
2 )·ε−1

1

= ε1 · (ε2 · ($2 + γ) · ε−1
2 + (dA0

ε2) · ε−1
2 +$1) · ε−1

1 + (dA0ε1) · ε−1
1

= (ε1, $1) · ((ε2, $2) · γ) = g1 · (g2 · γ)

6.4 Map out of G to spaces of connection: Gauge Equiv-
ariance

Lemma 6.5 The choice of a base connection A0 also determines a map

µA0 : G −→ A×A (6.17)

into the space of “bi-connections” A×A according to:

µA0
(g) = µA0

((ε, $)) = (A0 +$, A0 · ε) ∈ A×A (6.18)

= (A0 +$, A0 + ε−1(dA0ε)) (6.19)

so that the map µA0 of right H spaces is HτA0
-equivariant.
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Proof: The proof is immediate according to the following:

µA0
(g · τA0

(h)) = µA0
((ε, $) · τA0

(h)) = µA0
((ε, $) · (h,−h−1dA0

h)) (6.20)

= (dA0
+ h−1$h+ h−1(dA0

h), dA0
+ h−1(ε−1(dA0

ε))h+ h−1(dA0
h)) ∈ A×A

= (A0 +$,A0 + ε−1(dA0ε)) · h = µA0(g) · h

QED

Definition 6.6 The map µA0
will be called the Bi-Connection map in what

follows.
If we use the natural action of HτA0

on A to form an associated bundle of
affine spaces with total space TA, the bi-connection can be seen as determining
two natural sections σ1, σ2 depicted below as:

A ↪→ TA
π ↓↑ σ1,2

B
(6.21)

The values of these two sections σ1,2 will be known as the A and B connections
respectively, written as

Aω = ∇0 +$ω Bω = ∇0 + ε−1
ω (∇0εω) (6.22)

when needed separately.

7 The Augmented or Displaced Torsion

The Torsion Tensor has always presented a puzzle. It is traditionally introduced
very early on in the study of Riemannian geometry and is almost never heard
from thereafter except in niche explorations. One modern interpretation of this
stylized fact could be that the torsion of a connection is afflicted with a disease
that keeps it from being ‘gauge covariant’ and thus useful to the mainstream of
modern theory.

An important principal of some potential relevance here is seldom stated
explicitly. It is that when faced with a mathematical disease, it is often advan-
tageous to seek a second disease in the hopes that an even number of diseases
might be poised to kill each other in pairs.

7.1 Augmented Torsion and its Transformations

Our strategy is to think as follows. There are effectively two different ways of
transforming a connection. One is by gauge transformation and the second is by
‘translation’ by adding to it an ad-valued 1-form on Y . Because these two group
actions have been intertwined within the inhomogeneous gauge group, there are
effectively two separate ways to transform the spin connection inherited from
the Levi-Civita connection of the metric. Taking their difference is meaningful
because both transformed connections carry exactly the same global disease
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that renders them non-gauge covariant. Therefore the ability to generate two
separate connections with a common disease from a single group element in G
which is still a set theoretic if not algebraic product is meaningful.

Definition 7.1 There is a well defined map from the inhomogeneous gauge
group G to the space of generalized torsion tensors N viewed as a right H-
module, given by:

δ ◦ µA0
: G −→ N (7.1)

so that we can define The Augmented Torsion Tensor Tg = Tε,$ = T ((ε,$))
according to

Tg = δ(µA0
((ε,$))) (7.2)

which is given explicitly by:

Tg = $ − ε−1(dA0ε). (7.3)

The Augmented Torsion is distinguished in that it is very well behaved under
HτA0

transformations. This can be seen explicitly as:

Lemma 7.2 The augmented torsion tensor as a map from G to N is equivariant
as a map of right HτA0

-spaces.

Proof:
Tg·τA0

(h) = T(ε,$)·τA0
(h) = T(ε·h,h−1$h−h−1(dA0

h)) (7.4)

= h−1$h+ h−1(dA0h)− (ε · h)−1(dA0(ε · h))

= h−1$h+ h−1(dA0
h)− (h−1 · ε−1)((dA0

ε) · h+ h−1 · (dA0
h))

= h−1($ − ε−1(dA0
ε))h = Ad(h−1, Tg)

QED
In essence, the group G is topologically the Cartesian product of two separate

groups acting on the common space A. The presence of a single connection ∇0

and a single element β = (εβ , $β) ∈ G leads to two separate new connections
A = (∇0) · ε,B = (∇0) ·$ which in an affine space suggests taking a difference
A−B ∈ N which diagrammatically appears as

A
ε↗ ↘

∇0 × N
$ ↘ ↗

A

(7.5)

7.2 Summary of spaces and maps

The following diagram summarizes much of what we have just discussed:

H
τA0
↪→ G

µA0−→ A×A δ−→ NHR
↓ πA0

AA0
∼= NGL

(7.6)

with respect to the integral spin fields. The addition of the half-integral spin
fields leads to a sort of super-space like version of the above.
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8 The Family of Shiab Operators

With this machinery notated and established, we can turn to the second major
advantage of working in the Meta-Riemannian paradigm.

Figure 5: Ship In a Bottle Construction.

In essence, gauge theory and relativity have been disconnected because of
the incompatibility of contraction and gauge covariance of terms within the
action. The former typically contracts between a differential form and some
other bundle associated to the tangent bundle where the differential form is
valued, while gauge rotation typically acts on the latter bundle without touching
the forms.

The ‘Ship in a Bottle’ construction attempts to get around this difficulty. By
incorporating the gauge group into the contraction operator, the gauge group
rotates only the bundle valued portion of a collection contracting forms {Φi}
in which these special invariant differential forms are valued in such a way that
it exactly compensates for the a symmetry of treatment in the form being con-
tracted. Suppose for example that η is a gauge covariant ad−valued differential
form. Then a Shiab contraction operator might look like:

}· εη = ∗ni
1±1

2 [(ε−1Φrε) ∧ ∗mη]± (8.1)

or perhaps a sum of such terms, where typically Φr is a normed Lie Algebra
Valued r-form valued in an invariant subspace of the structure group of the
tangent bundle and the bracket is either a commutator or an anti-commutator
with a factor of i out front in the case of the latter.

There is most likely a byzantine taxonomy of such objects along the lines
of what Reese Harvey detailed for the Clifford Algebras in his book on Spinors
and Calibrations.

The author is no longer in a position to go chasing after the complete picture
and simply details some of the available tools for customizing such operators.

8.1 Pure Trace Elements

As vector spaces over the real numbers,

Λ∗(T ∗X) = Cl(T ∗X) (8.2)
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but where the algebraic structures are somewhat different. In our case, when Y
inherits a (7, 7) metric, we have an equivalence at the level of vector spaces:

ϑ : Λ∗(T ∗Y ) −→ Cl(T ∗X) = R(128). (8.3)

If ClR(T ∗Y ) is included in its own own complexification it can be seen within
the matrix algebras

spin(64, 64) −→ u(64, 64)
↓ ↓

ϑ : gl(128,R) −→ gl(128,C)
| | | |

ϑ : ClR(T ∗Y ) −→ ClC(T ∗Y )

(8.4)

which commute on:

so(64, 64) “ = ” (Λ2 ⊕ Λ6 ⊕ Λ10 ⊕ Λ14)︸ ︷︷ ︸
/SL⊗/SR=/SL⊗/S

∗
L=/S∗R⊗/SR

⊕ (Λ1 ⊕ Λ5 ⊕ Λ9 ⊕ Λ13)︸ ︷︷ ︸
Λ2(/SL)⊕Λ2(/SR)

⊂ ClR(7,7).

(8.5)
What differs instead is what happens on

u(64, 64)/so(64, 64) “ = ” k0Λ0⊕ k3Λ3⊕ k4Λ4⊕ k7Λ7⊕ k8Λ8⊕ k11Λ11⊕ k12Λ12

(8.6)
which must be multiplied by various factors of i inside the complexification.

Definition 8.1 Let {Φi}14
i=0 be a basis for the invariant subspaces of

[Λi(R7,7)⊗ u(64, 64)]Spin(7,7) (8.7)

seen as a Spin(7, 7) representation.

8.2 Thoughts on Operator Choice

The particulars of the Shiab operators are workmanlike and not of much interest.
The interesting aspect of them, is that they all essentially look like contracting
over indices in the fashion familiar from Riemannian tensor geometry, but with
some aspect of conjugation by the gauge group element ε ∈ H ⊂ G living inside
the inhomogeneous gauge group G as a non-linear sigma-field of sorts.

The author remembers choosing them years ago via representation theory
techniques involving highest weight representations rather than by the more
indicial methods presented here with invariant elements Φi. The advantage was
that the Bianchi identity was able to pick the best and most appropriate operator
in different circumstances. Unfortunately, the author is no longer conversant in
that language and has been unable to locate the notes from decades ago that
originally picked out the operator of choice to play the role of the Swerve here
}· . The author either hopes to find the original calculations or to get back to
the point where he can reconstruct this argument based on using the Bianchi
identity to guarantee gauge perpendicularity and/or use the Bianchi identity to
guarantee automatic solution of a differential equation in the curvature.

Note: A brief discussion of additional tools for Shiab construction has been
moved to a a short technical appendix.
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9 Lagrangians

There are multiple considerations in putting forward Lagrangians in this con-
text. In particular there are issues of redundant equations, Bianchi Identi-
ties, cohomological considerations for deformation complexes, so-called Super-
symmetry, agreement with prior physical equations, and the issue of Dirac-
Pairs where one set of more restrictive (usually first order) equations guaran-
tees the solution of the equations of a different related (usually second order)
Lagrangians.

9

9.1 The 1st Order Bosonic Sector

The purely Bosonic portion of the action is a real valued function:

IB
1 : G ×MET (X1,3) :−→ R (9.1)

While there are other possibilities to explore for the choice of the Shiab
operator, Let

}· ε : Ω2(Y 7,7, ad) −→ Ωd−1(Y 7,7, ad) (9.2)

we will begin with one10 which makes the parallel to Einstein’s contraction of
the full Riemannian curvature explicit:

}· εξ = [(ε−1Φ1ε) ∧ (∗ξ)]︸ ︷︷ ︸
Ricci Like

−∗
2

[(ε−1Φ1ε)︸ ︷︷ ︸
gµν - like.

∧ ∗ [(ε−1Φ2ε) ∧ (∗ξ)]]︸ ︷︷ ︸
Ricci Scalar Like

(9.3)

for a gauge covariant ad-valued 2-form ξ ∈ Ω2(Y, ad).
Here, as in Einstein’s case, the Weyl curvature tensor is annihilated by the

contraction operator above so the operator preserves and mixes only the ana-
logues of the Ricci and Scalar curvature components.

The puzzle of how to kill off the Weyl curvature contribution to recover
Riemannian geometry’s ability to form Einstein tensors for gravity in such a
way as to preserve Ehresmannian gauge covariance is part of what is meant by
Geometric Unity. This leads to a model that abstracts the Einstein-Hilbert and
Chern-Simons actions to generate linear field equations in the Riemannian and

9We have closely followed the history referred to by Dirac in his 1963 Scientific American
Article discussing Schrodinger and the Multiple iterations of Einstein’s (and Grossman’s)
introduction of General Relativity and taken from them that an author will have to fine tune
the instantiation of a new idea. What we take away from this is that the tiny minority of
authors who put forward new physical law have to have the right to explore instantiations of
new ideas without the community over indexing on the instance put forward. As with any
release, the interested community is welcome to send bug fixes.

10The author used to construct such objects from representation theory concepts like highest
weights. The Shiab operator that he settled on (but cannot yet now locate) was chosen for its
properties relative to the Bianchi identity. Even if it can be located, it will be in a different
language with which the author no longer feels entirely familiar. So it is.
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Ehresmannian curvature tensors via an action IB
1 which for only the Bosonic

fields of integral spin (ε,$ on Y and ג on X) looks like:

IB
1 (ωY , (Xג = IB

1 ((εY , $Y ), (Xג (9.4)

=<

Shifted

Torsion︷︸︸︷
Tω , ∗︸︷︷︸

Hodge

Star

(

Einstein

Ricci

Shiab︷︸︸︷
}· ω ( FBω︸︷︷︸

Metric

Curvature

+

C-S Like Terms︷ ︸︸ ︷
1

2
dBωTω +

1

3
[Tω, Tω])+

κ1

2
Tω︸︷︷︸

Shifted

Torsion

) >

Zorro

Metric︷︸︸︷
g

ג

=

∫
Y

Tr(($−ε−1d0ε)∧∗([(ε−1Φ1ε) ∧ (∗(·))]︸ ︷︷ ︸
Ricci Like

−∗
2

[(ε−1Φ1ε)∧∗ [(ε−1Φ2ε) ∧ (∗(·))]]︸ ︷︷ ︸
Ricci Scalar Like

)

(ε−1R̃θijσε+
1

2
(d0 + ε−1d0ε)($ − ε−1d0ε) +

1

3
[$ − ε−1d0ε,$ − ε−1d0ε]))

+κ1

∫
Y

Tr(($ − ε−1d0ε) ∧ ∗($ − ε−1d0ε))

where:

1. R̃θijσ is the Spinor bundle’s Riemannian curvature induced from the Levi-
Civita connection.

2. Tω = $ − ε−1d0ε ∈ Ω1(Y, ad) is the augmented torsion tensor.

3. The Shiab Operator }· ω on an ad-valued 2-form ξ ∈ Ω2(Y, ad)is given in
accordance with the Einsteinian contraction

}· εξ = [(ε−1Φ1ε) ∧ (∗ξ)]︸ ︷︷ ︸
Ricci Like

−∗
2

[(ε−1Φ1ε) ∧ ∗ [(ε−1Φ2ε) ∧ (∗ξ)]]︸ ︷︷ ︸
Ricci Scalar Like

4. The Bω connection is the gauge rotation of the Levi-Civita Spin Connec-
tion: Bω = ∇0 + ε−1d0ε

By the calculus of variations we obtain Euler-Lagrange Equations of the
form:

dIB1 ,ג) ω)|Y 14 =

 Υω

⊕
Ξω

 ∈ Ωd−1(ad)
⊕

Ωd(ad)
(9.5)

where generally
Ξ = DωΥω (9.6)

for some operator differential Dω so that the vanishing of Ξω = 0 need not be
considered if Υω = 0 by the redundant nature of the second equation.
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And by gathering up terms we can express them in a fashion that is closer
to the more familiar equations of General Relativity. Thus we have:

∂IB
1 ((εY , $Y + sα), (Xג

∂s
=< α,}· ωFAω + ∗κ1Tω >=< α,ΥB

ω > (9.7)

}·Fω︸︷︷︸
Swerved Curvature
= Swervature = Sω

= − ∗ κ1 Tω︸︷︷︸
Displaced Torsion︸ ︷︷ ︸

Displasion=Tω

(9.8)

So that if one wanted to locate and recover from a GU equation:

Υω = Sω − Tω = 0 (9.9)

the more familiar terms of the Einstein Field Equations for Gravity, it would
generate an annotated equation along the lines of:

Sω︸︷︷︸
Rµν− s2 gµν

= Tω︸︷︷︸
Λgµν︸ ︷︷ ︸

Tµν

(9.10)

9.2 Second Order Euler-Lagrange Equations

One of the Claims of Geometric Unity is that we have been unsuccessful in
Unifying the four basic equations for Gravity, Non-Gravitational force, Matter
and Higgs phenomena because they belong to a Dirac Pair. That is, we believe
that the Einstein and Dirac equations belong to a unifying equation which is
in the sense of Dirac something of a square root of a different equation or
Lagrangian related to the Yang-Mills-Maxwell equation and the Higgs version
of the Klein-Gordon equation. Thus we should seek to unifying our equations
and Lagrangians much the way Dirac unified first and second order equations
with his masterstroke To this end we focus on second Lagrangian of 2nd order:

IB
2 ((εY , $Y ), (Xג = ||ΥB

ω ||2 (9.11)

∂IB
2 ((εY , $Y + sα), (Xג

∂s
=< α, 2(d∗Aω}·

∗
ω + κ1Id)ΥB

ω ) > (9.12)

= 2 < α, d∗Aω}·
∗
ω}· ωFAω︸ ︷︷ ︸

New ‘Yang-Mills’ Term

+κ1d
∗
Aω}·

∗
ωTω + κ1 ∗}· ωFAω + κ2

1Tω > (9.13)

yielding
D∗ωFAω = JBω︸ ︷︷ ︸

Yang-Mills-Maxwell like equation with Bosonic source.

(9.14)

but more efficiently as
D∗ωΥω = 0 (9.15)

which is more natural within Geometric Unity.
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9.3 The Fermionic Sector

In the case of the Fermionic content we can at the classical level take fields
ν̄, ζ̄, ν, ζ on Y to be four distinct fields when ultimately we will wish to integrate
out the Dirac like operator to take a Berezinian ‘integral’ in the quantum theory.

For ν, ν̄ ∈ Ω0(Y, /S) and ζ, ζ̄ ∈ Ω1(Y, /S) we can begin with operators like:

(
ζ̄− ζ̄+ ν̄− ν̄+

)
ρ(ε)
·


∗}·$++ ∗}· (d0 +$+−) $++ d0 +$+−

∗}· (d0 +$−+) ∗}·$−− d0 +$−+ $−−
−$̄∗++ −d∗0 − $̄∗+− 0 0

−d∗0 − $̄∗−+ −$̄∗−− 0 0


︸ ︷︷ ︸

/D
ω

·


ζ+
ζ−
ν+

ν−


ρ(ε−1)

(9.16)
noting that other versions of the theory exist including one with a non-trivial
map in the lower right quadrant of the operator. This two can be made to look
closer to the Dirac Theory of Spinorial Fermions:

/DFω

(
ζ
ν

)
ρ(ε−1)

= /Dωχε−1 = 0 (9.17)

where χ contains three generations of observed Fermions as well as Looking-
Glass matter, dark Spinorial Matter, Rarita-Schwinger matter and more while
D subsumes the Dirac Operators, and the various subfields of ω accomodate the
functionings of the CKM matrix, the Higgs-Like soft mass fields, the Yukawa
couplings, Gauge Potentials and the like.

Let us compile the Bosonic and Fermionic variations of the Spinorial La-
grangian terms in a single term:

ΥF = ∗


dAων + ∗}· dAωζ

⊕
d∗Aωζ
⊕

ν̄ζ + ζ̄ν +}· ζ̄ζ

 (9.18)

as a kind of 1-form on some SuperSpace-like structure over A:

ΥF
ω ∈


Ωd−1(Y, /S)
⊕

Ωd(Y, /S)
⊕

Ωd−1(Y, ad)

 (9.19)

which can be combined with the variation of either a first or second order purely
Bosonic Lagrangian so as to form:

Υω = ΥB
ω + ΥF

ω = 0 or Dω∗ΥB
ω = ΥF

ω (9.20)

At this point, we wish to take this mixed spinorial-tensorial Υω and ask whether
we are attempting to penalize this expression in our extremization because it is
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actually the obstruction term for a cohomology theory. That is, we choose to
view ‘wedging’ with Υω as the application of a zeroth order operator and ask
if it possesses a non-trivial square root the in form of a first order differential
operator δω so that:

Υω = 0 and
√

Υω = δω  (δω)2 = 0  Cohomology (9.21)

to get a Lagrangian Cohomology theory of at least two steps:

Υω = (δω)2 = δω2 ◦ δω1 = 0 (9.22)

of a geometrically meaningful cohomology complex.

10 Deformation Complex

The expected way to have our field equations arise naturally as the obstruction
to a cohomology theory, is to first ask about the moduli space of solutions to
the equations. That is, if ω∗ represents a solution to the equations of motion
with Υω∗ = 0, in what are essentially different directions, may we perturb ω∗

to obtain new solutions? To that end we begin first with the purely Bosonic
fields on Y and linearize our Tedhe action of the gauge group H on the group
G = H n N via the τ0 homomorphism by linearizing both the groups and the
exponential map of the action:

δω1︷︸︸︷ δω2︷︸︸︷
Ω1(ad) −→ Ωd−1(ad) −→ 0

↗ ⊕ ↗
0 −→ Ω0(ad)︸ ︷︷ ︸

Symmetries:

TeH

−→ Ω0(ad)︸ ︷︷ ︸
Fields:

TωG

︸ ︷︷ ︸
Equations:

T ∗ωGd−1

(10.1)

——
In a certain sense, one can view the usual (twisted) DeRahm complex as the

square root of the of the curvature as dA ◦ dAφ = [FA ∧ φ]. The same is true
for the Υ-Spinor-Tensor so we may ask if there is a complex with a co-chain
operator such that: √

Υω = δω (10.2)

where the individual operators are configured so that:

δω1 : Ω0(ad) −→
Ω1(ad)
⊕

Ω0(ad)
δω2 :

Ω1(ad)
⊕

Ω0(ad)
−→ Ωd−1(ad) (10.3)

and in fact this will give our assemblage11 the structure of a (Bosonic) defor-
mation complex.

11Many years ago, while thinking about this, the author passed through Iceland and was
amused to find that a ‘Thing’ in Icelandic was a ‘Governing Assembly’ and as such took to
referring to this governing assemblage for deformations as a Thing with operators Things 1
and 2.
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To expand the concept from purely integral spin fields to include those of
fractional spin, we are led to linearize equations of the form:

χ =

(
ζ
ν

)
(10.4)

δω2 ◦ δω1 = Υω =

(
/Dωχ

}· ωFAω + ∗kTω + σ(}· ω,Ψ, Ψ̄)

)
= 0 (10.5)

The first step then for us is to examine what we mean by ‘essentially different
directions’ of perturbation as regards the symmetry built into the problem. As
we have endeavored to keep our metric theory gauge theoretic, let us first try to
remove the uninteresting redundancy that is merely due to the gauge symmetry
of the H action.

The effect of an infinitesimal gauge transformation γ ∈ TeH on a point
g = (ε,$) ∈ G = PH is given by:

d

ds
g · τA0

(exp(sγ)) =
d

ds
(ε,$) · τA0

(exp(sγ)) (10.6)

=
d

ds
((ε,$) · (exp(sγ), exp(sγ)−1dA0

exp(sγ)))

= (DLεγ, dA0
γ − [γ,$]) = (DLεγ, dA$γ)

so that we have:

δω1 =

 δω1,a
⊕
δω1,b

 =

 dAω
⊕

DLεω

 (10.7)

As for the second operator, we can search for it in the linearization of the
equations of motion. To this end we posit:

δω2 =
(
δω2,a ⊕ δω2,b

)
(10.8)

δω2,a = }· ω ◦ dAω (·) + κ1 ∗ (·) (10.9)

δω2,b = FAω ∧}· (·)− κ1 ∗ dBω (·)

Putting this Bosonic piece together with the Spinor deformations gives a dia-
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gram that looks something like:

Ω1

 /S
⊕
ad



( ∗d∗A ζ∗c )

����

∗
(

0 ν̄
ν̄ 0

)
))

}· ε
(

dAω
ζ̄

ζ̄ dAω

) // Ωd−1

 /S
⊕
ad



⊕ ⊕

Ω0(ad)

(
ζ

dAω

)

@@ BB

(
ν

Adε

) // Ω0

 /S
⊕
ad



(
− ∗ dAω 0

∗ζ̄ − ∗ ε−1d0

)
>> AA

( ∗κ2 0 )
// Ωd(/S)

(10.10)
[Note: This diagram is carried over from an older version and may contain

some inconsistancies until it is stabilized. Caveat Emptor.]

11 Observed Field Content

One of the features that arises when doing away with the primary nature of
space-time and replacing a single metric space with a tension between two sep-
arate but related spaces linked by metrics, is that we find ourselves in the novel
situation where must relate fields that are native to different spaces. The prin-
cipal means of doing this is via the pull back operation. To interpret differential
equations governing fields native to Y back on X means pulling back not only
bundles but so-called Jets or Sprays of sections on Y . But, to begin with, we
can simply analyze the zeroth order of the activity on Y by pulling back bundles
via the ∗ג operation derived from making a metric observation of Y by X.

To begin with, let us detach from the spaces TxX to general metric vector
spaces W in even dimensions to say a few words about direct sums and tensor
products of defining and spin representations for Spin(W ).
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11.1 Fermionic Quantum Numbers as Reply to Rabi’s ques-
tion.

To begin with, there is a simple rule for tensor products of defining representa-
tions and spinors whereby the tensor product

W ⊗ /SW = /SW ⊕ /RW (11.1)

breaks into a piece representing the action of gamma matrices as spinor en-
domorphisms and a second piece giving the pure Rarita-Schwinger spin 3/2
representation corresponding to the sum of the highest weights of the factors.

We note further, that spinor representations carry the property of the ex-
ponential in that they take in direct sums as input and return products of the
spinors of the summands as output.

W = U ⊕ V  /S(W ) = /S(U ⊕ V ) = /S(U)⊗ /S(V ) (11.2)

Both of these are likely to be well known to physicists. Some what less
familiar is that the Rarita-Schwinger representation has slightly odd behavior
when applied to direct sums of vector spaces.

The rule here is that

/R(W ) = /R(U ⊕ V ) =


/R(U)⊗ /S(V )

⊕
/S(U)⊗ /R(V )

⊕
/S(U)⊗ /S(V )

 (11.3)

with an odd re-appearance of a final term which has purely spinorial with no
3/2 spin Rarita-Schwinger component.

To apply the above to our situation we recognize that ζ represents a spinor
valued 1-form and ν a spinor on Y with U representing the Horizontal and V
the Vertical normal bundle Nג to the metric as an embedding

ג : X −→ Y. (11.4)

Even at zero-level before the introduction of higher Jets, the pull back of
ν, ζ and their host bundles is potentially of considerable interest.

11.2 The Three Family Problem in GU and Imposter Gen-
erations.

‘Who ordered that?’ -Isidore Rabi on the Muon

We have had to restrict ourselves to a world without auxiliary internal quan-
tum numbers as essentially everything has been generated endogenously from
X4. This leaves the question of why we appear to see a rich offering of repeating
internal Fermionic quantum numbers.
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In fact we will make two likely to be controversial claims in this section that
may appear to fly in the face of experimental observation. The first is that we do
not believe that nature has simply repeated herself three times albeit at different
mass scales. While we do believe that a second copy of Fermionic matter matches
this description, we believe that a third family is merely effectively identical to
the other two and, presumably, only at low energy.

Secondly, while we are often told that the discovery of parity violation in
beta decay found in the 1950s by Chien-Shiung Wu following theories of Yang
and Lee, proves that nature is intrinsically chiral, we will again hazard the guess
that it is merely effectively chiral so that at a deeper level it remains intrinsically
balanced between left and right. To see this more clearly we will decompose
our Fermionic sector under the decompositions of S(T/)∗ג ∗Y )) and R(T/)∗ג ∗Y ))
under

T)∗ג ∗Y ) = T ∗X ⊕Nג (11.5)

To this, our rolled up Fermionic complex looks quite different under the
above tangent space decomposition:


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where we have used the notation:

F±1
2

=

 2∓ ⊗ 16+

⊕
2± ⊗ 16−

 Q±3
2

=

 6∓ ⊗ 16+

⊕
6± ⊗ 16−

 Z±1
2

=

 2∓ ⊗ 144+

⊕
2± ⊗ 144−


(11.6)

for Spin(1, 3)×Spin(6, 4). The idea being explored here is that the full operator
depicted decouples effectively into two separate Dirac like operators, when there
is no vacuum expectation value pulling the various sub-fields of $ to values
significantly above zero. Thus we assert that a non-chiral total theory splits
at the emergent level into two separate chiral theories and that the one above
the dashed line corresponds to matter in our world with the other sectors not
labeled by F to the left and above the line are currently dark to us.

11.3 Explict Values: Predicting the Rest of Rabi’s Order.

With all that said above, we can now predict what the internal quantum num-
bers will likely be if GU is correct as per the following:

Names Multiplicity Dimension Structure Notation Name(s)

Left Quarks 1 6 [3× 2]n=1
L

Left Anti-Quarks 1 3 [3̄× 1]n=2
L

Left Anti-Quarks 1 3 [3̄× 1]n=−4
L

Left Leptons 1 2 [1× 2]n=−3
L

Left Anti-Lepton 1 1 [1× 1]n=6
L

Left Anti-Lepton 1 1 [1× 1]n=0
L

after reductions of the structure groups. A more violent regime would be ex-
pected to reveal differences that are more profound than mere mass discrepan-
cies.

Another surprise would be a new cousin spin- 3
2 ‘generation’ Q+

3
2

, in which

the logic of the known matters is reversed in the sense that it is right handed
matter and left handed anti-matter that feel the effects of Weak-Isospin.

Names Multiplicity Dimension Structure Notation Name(s)

1 6 [3̄× 2]n=−1
L

1 3 [3× 1]n=−2
L

1 3 [3× 1]n=+4
L

1 2 [1× 2]n=+3
L

1 1 [1× 1]n=−6
L

1 1 [1× 1]n=0
L

52



Number Multiplicity Dimension Structure Electric Charge Name(s)

1 1 16 [8× 2]n=−3
L −1, 0

2 1 8 [8× 1]n=0
L 0

3 1 8 [8× 1]n=6
L 1

6 1 12 [6̄× 2]n=1
L + 2

3 ,−
1
3

5 1 6 [6× 1]n=2
L + 1

3

4 1 6 [6× 1]n=−4
L − 2

3

12 1 9 [3̄× 3]n=2
L + 4

3 ,+
1
3 ,−

2
3

11 1 9 [3̄× 3]n=−4
L + 1

3 ,−
2
3 ,−

5
3

8 1 6 [3× 2]n=7
L + 5

3 ,+
2
3

7 1 6 [3× 2]n=−5
L − 1

3 ,−
4
3

20 *1 6 [3× 2]n=1
L + 2

3 ,−
1
3

13 1 6 [3̄× 2]n=5
L + 4

3 ,+
1
3

10 1 3 [3× 1]n=−2
L − 1

3

9 1 3 [3× 1]n=−8
L − 4

3

20 *2 6 [3× 2]n=1
L + 2

3 ,−
1
3 Imposter Quarks

18 2 3 [3̄× 1]n=2
L + 1

3 Imposter Anti-Quarks

19 2 3 [3̄× 1]n=−4
L − 2

3 Imposter Anti-Quarks

15 1 3 [1× 3]n=6
L +2,+1, 0

16 1 2 [1× 2]n=−9
L −2,−1

23 1 1 [1× 1]n=0
L 0 Imposter Anti-Neutrino

14 1 3 [1× 3]n=0
L +1, 0,−1

21 *1 2 [1× 2]n=−3
L −1, 0 Imposter Leptons

22 1 1 [1× 1]n=6
L +1 Imposter Anti-Electron

17 1 2 [1× 2]n=3
L +1, 0

21 *1 2 [1× 2]n=−3
L −1, 0

11.4 Bosonic Decompositions

As we have argued previously, the observed standard model appears to be con-
sistent with a reduction of structure group of the full Dirac Spinors on Y in
three stages

1. First: to a splitting of T ∗Y to T ∗X together with the normal bundle Nג
of the metric seen as an embedding, according to T)∗ג ∗Y ) = T ∗X ⊕Nג.

2. Second to a Maximal Compact Subgroup of structure group of the Normal
bundle Nג from Spin(6, 4) to Spin(6)× Spin(4) ∼= SU(4)× SU(2)× SU(2)
in accordance with the Pati-Salam theory.

3. Lastly to a complex structure on the Normal bundle from Spin(6)×Spin(4)
to U(3) × U(2) where a final reductive factor may be removed or not by
privileging a complex volume form.
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As far as understanding the picture of the force carrying gauge potentials, we
are really looking to understand what parts of Ω1(Y, ad) carries meaning for us
already within the standard model. To that end we can see that at the level
of vector spaces if not as algebras, the ad−bundle is equivalent to the exterior
bundle on Y . Both the branching of the 1-forms Ω1(Y ) and the ad-bundle are
straightforward under pull back of ∗ג to X.

ad(Y)∗ג )) = Λ∗(TX4 ⊕N10
ג ) =

4⊕
i=0

10⊕
j=0

(Λi(TX4)⊗ Λj(N10
ג )) (11.7)

= Λ∗(TX4)⊕ Λ∗(N10
ג )⊕ (

4⊕
i=1

10⊕
j=1

(Λi(TX4)⊗ Λj(N10
ג ))) (11.8)

so

Λ1(TX4⊕N10
ג )⊗Λ∗(TX4⊕N10

ג ) = (Λ1(TX4)⊕Λ1(N10
ג ))⊗(

4⊕
i=0

10⊕
j=0

(Λi(TX4)⊗Λj(N10
ג )))

(11.9)
⊃ Λ1(TX4)⊗ (Λ2(N10

ג )⊗ Λ0(TX4)︸ ︷︷ ︸
Spin(6,4) GUT Gauge Potentials

)⊕ Λ1(TX4)⊗ (Λ2(TX4)⊗ Λ0(N10
ג )︸ ︷︷ ︸

Spin(1,3) GR Torsion Tensors

)

(11.10)
⊕ Λ1(TX4)⊗ (Λ1(TX4)⊗ Λ0(N10

ג ))︸ ︷︷ ︸
Space-Time Cosmological Constant and Dirac Mass

⊕ Λ1(N10
ג )⊗ (Λ1(N10

ג )⊗ Λ0(TX4))︸ ︷︷ ︸
Fiber Cosmological Constant and Dirac Mass

12 Summary

The approach of Geometric Unity as a candidate physical theory of our world
is to work with a variety of different bundles in both finite and infinite dimen-
sions which are all generated from a single space X4. The structure of the
relationships may be summarized here:

PH ←↩ U(64, 64)
π ↓
Y 7,7 ←↩ G̃L(4,R)/Spin(1, 3)
π ↓
X4︸ ︷︷ ︸

Finite Dimensions

H
τA0
↪→ G

µA0−→ A×A δ−→ NHR
↓ πA0

AA0
∼= NGL

︸ ︷︷ ︸
Infinite Dimensions

(12.1)
We recall that there is a theory of sections above the infinite dimensional con-
structions on the right hand side involved with superspaces and so-called ‘in-
duced representations’, but at this point cannot remember even the standard
theory and so have not entered into it here and may do so in further work if
there is sufficient interest and ability to recall.
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12.1 Equations

In Geometric Unity, we believe that the Einstein, Dirac, Yang-Mills and Klein-
Gordon equations for the metric, Fermions, internal forces and Higgs sector
respectively are not to be unified directly. Instead, the Einstein and Dirac
equations are to be replaced by the reduced Euler Lagrange equations

Π(dI1
ω) = (δω)2 = Υω = 0 (12.2)

for a first-order Lagrangian after removal of redundancy through projections Π
Then the Yang-Mills-Maxwell equations and Klein-Gordon equation for the

Higgs follow from a second related Lagrangian

Π(dI2
ω) = D∗ωΥω = 0 (12.3)

whose Euler Lagrange equation are automatically satisfied if the 1st order theory
is satisfied.

12.2 Space-time is not Fundamental and is to be Recov-
ered from Observerse.

There has always been something troubling about the concept of Space-Time
as the substrate for a dynamic world. In a certain sense, space-time is born
as a frozen and lifeless corpse where the past is immutable and the quantum
mechanically unknowable future hovers above it probabilistically waiting to be
frozen in the trailing wake of four-dimensional amber which is our geometric
past.

To have a hope of contributing insight, GU must, it must recover this es-
tablished structure as an approximation within the theory. But at its deepest
level, it seeks to break free of the tyranny of the Einsteinian prison built on the
bedrock of a single space with a common past.

There is something very special about the arrow of time mathematically.
Only in dimension n = 1 is Rn always well ordered. For every dimension n > 1
there is no such concept without additional structure chosen (e.g. indifference
curves and surfaces foliating the space of baskets in consumer choice theory).
In our case we have moved to a world X4 in which we believe all signatures are
in some sense ‘physically’ real, with X1,3 and X3,1 being the only two to be
provably anthropic, and the others being disconnected and unreachable by the
condition of non-degeneracy.

Yet in Geometric Unity, hovering above the world we see, there is always
a second structure Y 14 looming with multiple spatial and temporal dimensions
beyond our own. This capacious augmentation of non-metric X4 as proto-space-
time allows us to wonder about the nature of time without a clear arrow being
interpreted on a different space where the arrow is enforced by anthropics.

However, we have found it quite challenging to think through the tension
between two such worlds related by a bridge ג which must measure in order
to observe. Thus, the idea of measurement and observation are forced to be
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intrinsically tied and the concept of multi-dimensional arrowless time above is
shielded from us living as if in Plato’s cave below.

12.3 Metric and Other Field Content are Native to Dif-
ferent Spaces.

If the metric on X4 and the observed Bosonic and Fermionic fields are native
to the same space, then there is likely a need to put both of them in the same
quantum system. However, if they originate intrinsically from different spaces,
then the possibilities for harmonizing them without putting them into the exact
same framework increase. It may fairly be pointed out that we have a metric
in the derived space Y that will have to be put in a common framework with
the other fields, but even there we have a new twist. In this work we have not
been considering unrestricted metrics on Y . In fact, almost all of the ‘metric’
information is built into the construction of Y , so that our subset of ‘metrics’
under consideration is really equivalent to the space of connections that split the
long repeating exact sequence we have discussed between TY and T ∗Y . This
is not accidental but desired, as one of the goals of GU as connections, unlike
metrics, have an adequate quantization theory as exhibited by QED, QCD and
other theories. Hence the Zorro construction puts the only true metric field ג
on a separate space from the main quantized structures, but uses a connection
to derive the highly restricted metrics on Y .

12.4 The Modified Yang-Mills Equation Analog has a Dirac
Square Root in a Mutant Einstein-Chern-Simons like
Equation

Without the quadratic potential term in the earlier example of a GU Bosonic
Lagrangian, we are left with an expression of the form:

=<

Shifted

Torsion︷︸︸︷
Tω , ∗︸︷︷︸

Hodge

Star

(

Einstein

Ricci

Shiab︷︸︸︷
}· ω ( FBω︸︷︷︸

Metric

Curvature

+

C-S Like Terms︷ ︸︸ ︷
1

2
dBωTω +

1

3
[Tω, Tω]) >g

If we were to attempt to compare it to other Lagrangians, it would be seen
as having some aspects of both the Einstein-Hilbert and Chern-Simons La-
grangians. The Einsteinian character comes from the fact that it produces a
linear expression in the curvature tensor making use of Riemannian Projection
via }· ω. The Chern-Simons-Palatini like properties come from the fact that it
is a Lagrangian that takes connections and ad-valued 1-forms as its natural
parameter space.
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A comparison of the two expressions may be helpful to motivate some readers
more familiar with one than the other:

SCS(

Trivial︷︸︸︷
∇0

,∇A,

Gauge Trans︷ ︸︸ ︷
ε = Id) = 1

2
< A, ∗ Id ( 0 + d A + 2

3
A ∧ A) >

M3
g

l l l l l l
SGU (∇g︸︷︷︸

L-C

,∇$, ε) = < Tω, ∗ }· ω︸︷︷︸
Einstein

(FBω︸ ︷︷ ︸
Rν
ijµ

+ 1
2

dBω
Tω + 1

3
Tω ∧ Tω) >

Y 14
g

(12.4)

Where ω = (ε,$) ∈ G = HnN and the connection 1-forms

A = ∇A −∇0 $ = ∇$ −∇g (12.5)

are measured relative to the trivial connection in the usual Chern-Simons theory,
while Geometric Unity is inclined to use the spin Levi-Civita connection. The
displaced torsion on the other hand

Tω = ∇$ −∇gℵ · ε = $ − ε−1(d∇gε) (12.6)

is measured relative to the gauge transformed Levi-Civita spin-connection∇Bω =
∇g · ε. The operator }· ω depends on the gauge transformation and, like the
Einstein-Ricci projection, always kills off the Weyl curvature. Unlike the Einstein-
Ricci projection map, however, it does so in a gauge covariant fashion.

In the Chern-Simons case, the ad-valued 1-form A is differentiated by the
exterior derivative coupled to the trivial connection. Within Geometric Unity,
it is differentiated by the exterior derivative coupled to ∇Bω , the Levi-Civita
spin connection gauge transformed by ε.

12.5 The Failure of Unification May Be Solved by Dirac
Square Roots.

If we accept the colloquial description of the Dirac equation as the square root
of the Klein-Gordon equation, we see that solutions of a first order operator can
guarantee solutions of a more general second order equation.

This was oddly at the fore when the so-called ‘Self-Dual’ Yang-Mills equation
burst onto the scene in that

F±A = 0 d∗AFA = 0 (12.7)

indicating that an equation linear in the curvature was powerful enough to guar-
antee the solution of a differential equation in the curvature via the Bianchi
identity. This suggested to the author in the early 1980s in a seminar taught
at the University of Pennsylvania that the Self-Dual equations were actually
not so much meant to be Instanton equations, but were somehow more accu-
rately the Einstein Field Equations in disguise as the square root of the Yang-
Mills-Maxwell equations. Confusing this picture was the fact that the Einstein
equations are usually viewed as equations for a metric rather than a connection,
and the fact that the self-duality operator does not work for signatures other
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than (4, 0), (2, 2) and (0, 4), all of which are non-physical. However, we have
now attacked both of these issues in the construction of the Observerse so as
to be able to address the viability of the idea that the Einstein and Yang-Mills
curvature equations are so related.

Thus, in a Dirac pair, the Yang-Mills and Klein-Gordon equations would be
assigned to a second order strata and the Einstein and Dirac equations to a first
order strata, with a relationship between the two understood as above.

In our case of fundamental physics, there are so far four basic equations for
each of the known fundamental fields,

Spin Name Field Order

0 Klein-Gordon Higgs Field φ 2
1
2 Dirac Lepton and Hadron Fields ψ 1
1 Yang-Mills Gauge Bosons A 2
2 Einstein Gravitons g 2

(12.8)

In some sense, this can be replaced in GU by

Naive Spin Name Field Order

0 Klein-Gordon w Potential Yang-Mills-Higgs Field φ 2
1
2 ,

3
2 ‘Dirac-Rarita-Schwinger’ Lepton and Hadron Fields ν, ζ 1

‘1′ Yang-Mills Gauge Bosons $ 2
‘1′ ‘Chern-Simons-Einstein’ Tω 1

(12.9)
suggests a Dirac Square Root Unification. That is, the two first order equations
live inside a square root structure of a different equation that contains the two
second order equations. In an extreme abuse of notation we might write

Einstein-Dirac =
√

Yang-Mills-Higgs-Klein-Gordon (12.10)

to be maximally suggestive of the kind of Dirac Square Root unification we have
in mind.

12.6 Metric Data Transfer under Pull Back Operation is
Engine of Observation.

The metric tensor has traditionally been seen as an instrument of measurement
of length and angle. This of course, is purely classical, arising as it does in
both Special and General Relativity. The puzzle of Quantum measurement is,
however, rather different, as it involves the application of Hermitian operators
on Hilbert spaces to find eigenvectors as the possible post-measurement states,
with their corresponding Eigenvalues as the experimental results.

But in GU a different picture is possible. Consider X as if it were an old
fashioned Victrola and the Metric as analogous to an old fashioned stylus with Y
being a phonograph. What appears to be happening on the Victrola is largely a
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Figure 6: Observation and The Observerse.

function of where the stylus alights on the phonograph. From the point of view
of the listener, each track or location on the phonograph is a different world,
while from the perspective of the record manufacturer the album is a single
unified release. In this way, the world of states of Y is merely being sampled
and displayed as if it were the only thing happening on X.

12.7 Spinors are Taken Chimeric and Topological to Allow
Pre-metric Considerations.

It has been very difficult to get upstream from Einstein’s concept of space-time
for a variety of reasons. In particular, the dependence of Fermions on the choice
of a metric in fact appears to doom us to beginning with the assumption of a
metric if we wish to consider leptonic or hadronic matter. Yet this dependence
must be partially broken if we are to harmonize metric-generated gravity from
within metric-dependent Quantum Field Theory.

Many years ago, Nigel Hitchin demonstrated that, while the elliptic index of
a Dirac operator in Euclidean signature was an invariant by the Atiyah-Singer
index theorem, the dimension of the Kernel and Co-Kernel could jump under
metric variation. Since that time Jean-Pierre Bourguignon and others have
expended a great deal of work tracking Spinors under continuous variation of
the metric.

Given the odd way in which Spinors appear to be both intrinsically topo-
logical (e.g. the topological Â-genus) but confoundingly tied to the metric, we
have sought to search for the natural space over which the topological nature of
spinors is most clearly manifest. In essence, this has lead us to attempt to ab-
sorb the metric structure into a new base space made of pure measuring devices
but constructed from the purely topological representation of G̃L(r + s,R) on

the homogeneous spaces G̃L(r + s,R)/Spin(r, s)
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12.8 Affine Space Emphasis Should Shift to A from Minkowski
Space.

There appear to be many difficulties when attempting to do Quantum Field
Theory in curved space. Thus there has always been a question in the au-
thor’s mind as to whether the emphasis on affine Minkowski space M1,3 is a
linearized crutch to make the theorist’s model building easier, or whether there
is something actually fundamental about affine space analysis.

In some sense, GU attempts to split the difference here. We find the emphasis
on Minkowski space misplaced, but not the focus on affine theory, as no matter
how curved Space-time may be, there is always an affine space that is natural
and available with a powerful dictionary of analogies to relate it to ordinary and
super-symmetric Quantum Field Theory:

Special Relativity/QFT to GU Relativity, QFT GU Analog

Affine Space M1,3 A
Model Space R1,3 N = Ω1(ad)

Core Symmetries Spin(1, 3) H = Γ∞(PH ×Ad H)
Inhomogeneous Poincare Group G

Extension = Spin(1, 3) nR1,3 = HnN
Fermionic Extension Space-Time SUSY (ν, ζ) ∈ Ω0(/S)⊕ Ω1(/S)

(12.11)
This also makes more sense from the so-called super-symmetric perspective. If,
historically, supercharges are to be thought of as square roots of translations,
then in the context of a ‘superspace’ built not on M1,3 but on A, supercharges
would have an honest affine space to act and translate where they would ap-
pear as square roots of operators or gauge potentials. This would also allow a
framework where Supersymmetry12 could be formally active without the intro-
duction of artificial superpartners which have been remarkable in their failure
to materialize at expected energies. In this framework, the supercharges may
already be here in the form of the ν and ζ fields as this would not be space-time
supersymmetry.

12.9 Chirality Is Merely Effective and Results From De-
coupling a Fundamentally Non-Chiral Theory

Consider a stylized system of equations for a world Y with metric g, having
scalar curvature R(y), and endowed with a non-chiral Dirac operator operating
on full Dirac Spinors,(
−Λ(y) /∂A
/∂A −Λ(y)

)(
ψL(y)
ψR(y)

)
= 0 R(y)

(
1 0
0 1

)
= 4

(
Λ(y) 0

0 Λ(y)

)
(12.12)

12The author finds supersymmetry unnecessarily confusing as an as-if symmetry and is
uncomfortable saying much more about it.
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which are nonetheless decomposed into chiral Weyl component-spinors. Solving
both of these equations together yields a system of coupled equations:

/∂AψL(y) =
R(y)

4
ψR(y) (12.13)

/∂AψR(y) =
R(y)

4
ψL(y) (12.14)

leading to a stylized massive Dirac Equation with mass m = R(y)
4 for any fixed

background metric for which the scalar curvature R(y) is approximately con-
stant in a region under study.

However, in any region where the scalar curvature was zero or sufficiently
close to zero,

R(y) ≈ 0 (12.15)

the differential equations would decouple as they are only linked by the scalar
curvature term of order zero.

/∂AψL(x) ≈ 0 (12.16)

/∂AψR(y) ≈ 0 (12.17)

This however, is not the end of the story when the tangent bundle has further
structure. In the neighborhood of an embedding such as we have in:

ג : X1,3 −→ Y 7,7 (12.18)

we have
TY)∗ג 7,7) = TX1,3 ⊕N6,4

ג (12.19)

from our previous discussion.
However at the level of the chiral Weyl halves of the total Dirac Spinor we

have two decompositions:

S64/)∗ג
L (TY )) =

Luminous Light Standard Model Family Matter︷ ︸︸ ︷
(/S

2
L(TX)⊗ /S

16
L (Nג))⊕ (/S

2
R(TX)⊗ /S

16
R (Nג))

S64/)∗ג
R (TY )) = (/S

2
L(TX)⊗ /S

16
R (Nג))⊕ (/S

2
R(TX)⊗ /S

16
L (Nג))︸ ︷︷ ︸

Dark Decoupled Looking Glass Matter

(12.20)

requiring a different view of chirality as both Left and Right handed spinors
emerge from the branching rules of both Weyl halves confusing the picture.
Left handed spinors on Y do not remain exclusively Left handed on X.

It may be asked what the relevance of the above stylized toy example is to
the model under discussion. Quite simply, for every field on Y in the Observerse,
there is both a naive spin and a true spin. The naive spin of a differential form
valued in another bundle is taken to be the spin of the form field if the tensored
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bundle were taken formally to be purely auxiliary. Thus, for example, an ad-
valued one form would carry naive spin 1 whether or not the ad bundle was
derived from the structure bundle of the base space on which it lives.

Thus, for example, our bundle Ω1(Y, ad) of ad-valued 1-forms has naive spin
one, but this disguises the fact that it also contains an invariant subspace that
derives from Λ1 ⊗ Λ1 ⊂ Λ1 ⊗ Λ∗. This space of naive spin 1 would appear to
be truly spinless from the point of view of Y . Thus, in some sense, the field
playing the role of the fundamental mass for the generalized Dirac equations is
actually part of the gauge potential. This sets up a three way linkage:

Cosmological ‘Constant’ Λ↔ Spinless Gauge Field↔ Fermion Mass (12.21)

and it is in such ways that GU seeks to attack non-anthropic fine tuning prob-
lems by having the same fields do multiple service.

In essence here, a fundamentally non-chiral world of Dirac Spinors in this
simplified example would appear chiral in regions of low scalar gravity. From
beings made of such chiral matter, they would naturally view the universe as
being mildly chiral much the way each of the two hands in Escher’s drawing is
separately approximately symmetric about its middle digit. But raised high, the
symmetry breaks down as digits two and four are only approximately symmetric
in most people, and one and five are undeniably different. Yet it is not only
the two middle fingers which are beautiful and symmetric about themselves,
because the proper symmetry is left pinky to right pinky, left thumb to right
thumb etc. and not left pinky to left thumb, right pinky to right thumb which
is not broken as a symmetry, but simply accidental as well as being false.

12.10 Three Generations Should be Replaced by 2+1 model
of two True Generations and one Effective Imposter
Generation

At the time of this writing, the author is not convinced that we have three true
generations of matter which differ only by mass. We instead posited here that
the so-called third generation of matter is instead part of pure Rarita-Schwinger
Spin− 3

2 matter on Y and its Spin− 1
2 appearance on X is the result of branching

rules under pull back from Y where it is native:

R(TY/)∗ג )) = /R(ג∗(TY )) = /R(TX ⊕Nג) =



/R(TX)⊗ /S(Nג)
⊕

/S(TX)⊗ /R(Nג)
⊕

/S(TX)⊗ /S(Nג)︸ ︷︷ ︸
Imposter Third Generation


(12.22)

Thus, part of the field ζ ∈ Ω1(Y, /SR) is an ordinary second generation spinor
in Ω0(Y, /SL) via the Dirac gamma matrix contraction while the complement
/RR(TY ) corresponding to the sum of the highest weights contains the imposter
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third generation which is only revealed under decomposition as in the above.
Thus, it is not a true generation as it has a different representation structure
than the other two beyond its obvious mass difference.13

12.11 Final Thoughts

To sum up, let us revisit the Witten synopsis to see what GU has to say about
it:

Figure 7: Edward Witten Synopsis.

As we have seen, Geometric Unity may be considered an alternative narra-
tive that tweaks familiar concepts in various ways. As the author sees it, it is
really a collection of interconnected ideas about shifting our various perspec-
tives. Given the apparent stagnation in the major programs, GU has sought
an alternate interpretation of either or both of the two incompatible models
for fundamental physics of the Standard Model or General Relativity. In our
opinion this represents a rather general perspective on the likely reasons for
the impasse in fundamental physics encountered over the five decades since the
early 1970s. At almost every level, it appears to us as if the instantiations of the
most important general ideas and insights hardened prematurely into assump-
tions that now block progress. In most cases, our shift in perspective is usually
not a rejection of the current models at the level of ideas so much as a rejec-
tion of the pressure to communicate ideas concretely through instantiations. In
essence, we see an intellectual disagreement between the tiny group of physi-
cists who have sought to discover physical law and the vast majority of theorists
who attempted to work out its consequences. What good is a beauty principle
that works only in the hands of Einstein, Dirac, Yang, and a handful of others,
while leading to failure and madness for others? Yet, in these matters, we have
come to side with Dirac’s widely misunderstood perspective on the relationship
between, instantiation, beauty, theory and experiment. In essence, a beautiful

13Note: we are speaking loosely here as if mass eigenstates and flavor eigenstates were one
and the same.
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theory is not its instantiation, but those who do not seek physical law cannot
be forced to accept this critical issue.

To rephrase Witten’s paragraph then in light of Geometric Unity, it might
be rewritten as follows:

“To Summarize the strongest claims of the strongest form of Ge-
ometric Unity, the basic assertions would be: i) Space-time X1,3

arises as a pseudo-Riemannian manifold from maps ג between two

spaces Xn and Y
n2+3n

2 (X) = Met(X) where Y is constructed from
X at a topological level. ii) Over Y is a bundle C with a natural
metric which is (semi-canonically) isomorphic to TY , and one whose
structure bundle carries a complex representation

Spin(
n2 + 3n

2
,C) −→ U(2

n2+3n
4 ,C) (12.23)

on Dirac spinors with structure bundle PH for H a real form of
U , with no internal symmetry groups. There is an inhomogeneous
extension G of the gauge group H of PH acting on the space of con-
nections A(PH) where the stabilizer of any point A0 ∈ A gives rise
to a non-trivial endomorphism τA0 : H −→ G. iii) Fermions on X4

are pullbacks (ν)∗ג and (ζ)∗ג of unadorned non-chiral Dirac spinors
ν ∈ Ω0(Y, /S) and 1-form valued spinors, ζ ∈ Ω1(Y, /S) on Y . In low
gravitational regimes, the equations governing the fractional spin
fields decouple leading to emergent effective chirality that disguises
the non-chiral fundamental theory, and leading to Witten’s repre-
sentations R and R̄ which are not isomorphic exactly as according
to the branching rules for Spinors. The cosmological constant is ac-
tually the Vacuum Expectation Value (VEV) of a Field which plays
the role of a fundamental mass, leading to the light Fermions being
light in low gravity regimes. iv) If Super-symmetry is considered,
it lives on the inhomogeneous gauge group and not the inhomoge-
neous Lorentz or Poincare group where gauge potentials take over
from Galilean transformations and the affine space A plays the role
of the Minkowski space M1,3. The lack of internal symmetries in-
dicates why naive super-partners have not been seen as space-time
SUSY may be implementing over the wrong group. v) Gravity ג
lives on X while the fields of the standard model are native to Y
leading to a reason for General Relativity to appear classical on X
in contrast to the Quantum nature of the SM fields ω tied to Y . vi)
Gravity is the engine of observation, so that where gravity is local-
ized in different sections ,aג ,bג it pulls back different content while
vii) Gravity on Y is replaced by a cohomological theory involving an
obstruction δ2

ω = Υ combining elements of Einstein-Grossman, Dirac
and Chern-Simons theories, while there is a new 2nd order theory
replacing Yang-Mills, Higgs and Klein-Gordon theories so that the
cohomological theory δ2

ω = Υ = 0 is a ‘Dirac square root’ of the
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second order theory. viii) The branching rules of ν leads to the ap-
pearance of one family of Fermions. ix) ζ branches as a second family
due to gamma matrix multiplication on Y as TY ⊗ /SY = /SY ⊕ /RY
with a Rarita-Schwinger remainder. The Spin 3

2 portion of ζ breaks
down under pull back to reveal a third ‘imposter generation’ that
is merely effective, as it has different representation behavior in the
full theory. x) The first order theory has a rich moduli of classical
solutions and Υ = 0 carries an elliptic deformation complex in Eu-
clidean signature once the redundant Euler-Lagrange equations are
discarded.14”

We would like to end this speculative foray with a quote from the man whose
question provided the impetus for this excursion.

“The relativity principle in connection with the basic Maxwellian
equations demands that the mass should be a direct measure of the
energy contained in a body; light transfers mass. With radium there
should be a noticeable diminution of mass.The idea is amusing and
enticing; but whether the almighty is laughing at it and is leading
me up the garden path — that i cannot know.” -Albert Einstein

While we believe in the story of Geometric Unity, we find the above, now as
then, to be sage words in all such endeavors.

Appendix: Other Elements of Shiab Construc-
tions

Continuing on from our earlier discussion of Shiab operator construction, the
author simply wanted to note some of the gadgetry that has come up in the
construction of these operators in past years. Most of this is obvious, but the
fact that there are two products on the Unitary group Lie algebras given by
matrix commutators, and anti-commutators multiplied by i, is an example of
something that can be easily forgotten. The author may have forgotten other
tools in the Shiab workshop over the years as well.

Wedge

The wedge product passes to bundle valued forms from the usual DeRham
complex.

Hodge Star

As we have assumed our manifold to be oriented from the beginning, every
time a metric g on Y is chosen it induces a non-vanishing volume form dvol

14The so-called Seiberg-Witten equations were first found this way around 1987 as the
simplest toy model to proxy this moduli problem.
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compatible with the metric and orientation. This in turn induces a Hodge Star
operator

∗ : Ωi(B) −→ Ωd−i(B) (12.24)

which passes to forms valued in arbitrary bundles B over Y .

Contraction

Various forms of contraction can be defined either with co-variant against con-
travariant tensors in the obvious way or via the wedge and star operations
between forms as in:

φ ∨ µ = ∗(φ ∧ ∗µ) (12.25)

Adjoint Bundle

Bracket

As with any Lie Group, U(64, 64) carries a Lie Bracket structure. Given that
it lives embedded within the Clifford Algebra ClC(7, 7) = C(128), it can be
constructed from the matrix algebra product in the usual fashion:

[a, b] = a · b− b · a (12.26)

Symmetric Product

Unlike most Lie Algebras, there is a second symmetric product on u(n) gotten
from taking:

{a, b} = i(a · b+ b · a) (12.27)

Volume Form

The analog of the Hodge Star operator is multiplication with the Clifford Volume
form λ.

Appendix: Thoughts on Method

A few words are in order about what the author sees as unbridgeable differences
with the mainstream of the community of professional physicists.

Experiment and The Scientific Method

The author understands the scientific method differently from many others and
particularly from many within the world of String Theory. In essence there are
general ideas and multiple instantiations of those ideas. The author believes
that many who put their faith in the scientific method do not understand the
danger of being pressured to discard ideas because one of their instantiations
was invalidated by experiment. This is, in essence, the very point Dirac raised
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in his 1963 Scientific American Article where he warned that beauty rather than
the scientific method should be used as a guide to progress:

“It seems that if one is working from the point of view of getting
beauty in one’s equations, and if one has really a sound insight, one
is on a sure line of progress. If there is not complete agreement be-
tween the results of one’s work and experiment, one should not allow
oneself to be too discouraged, because the discrepancy may well be
due to minor features that are not properly taken into account and
that will get cleared up with further developments of the theory.”

It is the misinterpretation of this very clear point that the author finds
chilling. Dirac was clearly not saying that if a theory is beautiful, it need not
agree with experiment, and yet he is frequently lampooned as such. Why is
this?

The author believes there is a principle, by which the scientific communities
push most members for hyper explicit claims so as to learn the general idea
and to wed the author to a prediction that can be easily falsified. Should the
author succumb to associating her or his more general idea with a particular
instantiation that fails to be confirmed, that idea is now ‘up for grabs’. Fur-
ther, established players can speak more generally allowing different members
different privileges.

The author is proud to be able to offer algebraic predictions as to the ‘internal
quantum numbers’ of new particles but would need the help of Quantum Field
Theorists to see whether these can be sharpened further to include energy scales.
The author is not equipped to undertake that effort alone but considers the
predictions already offered to be considerably more explicit than many of the
current contenders for a theory of everything on a relative basis. The author’s
experience is that in calling such quantum numbers ‘predictions’ is that those
farthest away from making such predictions are paradoxically the most likely
to complain viciously about the lack of an energy threshold so as to deflect
criticism from their own theory’s failure to be able to make such claims.

Isolation

It is the experience of this author that almost no professional mathematicians
and physicists have any concept what it is like to be isolated from the community
for 20 years or more at a time. Geometry and field theory are languages that in
this author’s experience, decay exceedingly rapidly when there is no one with
which to speak them, and it is nearly impossible to find it actively maintained
anywhere outside of the profession.

It has been over 25 years since the current author was in a professional
environment where anyone else was conversant in the topics discussed here. My
apologies are offered for any inconvenience caused, but the author’s ability to
converse with the professional community, but, in full candor, the ability to
communicate was likely to get even further degraded via additional years of
isolation.
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Appendix: Locations Within GU

We collect here for convenience the usual ingredients that constitute fundamen-
tal physics and give their intended address within the framework of Geometric
Unity.

Usual Name GU Location

Higgs Field ($)∗ג
SM 1st Generation Fermions (νL)∗ג

SM 2nd Generation Fermions ζ)∗ג /SR)

SM 3rd Generation Fermions ζ)∗ג /RR )
Gluons ((גN)Spin(6)$)∗ג

Weak Isospin ((גN)Spin(4)$)∗ג
Weak Hypercharge ((גN)Spin(6)×Spin(4)$)∗ג
Space-time Metric ג

Higgs Potential < Υω,Υω >
CKM Matrix ($)∗ג

Einstein Field Equations Υω = 0
Dirac Equations Υω = 0

Yang-Mills-Maxwell Equations D∗ωΥω = 0
Higgs Klein-Gordon D∗ωΥω = 0

Cosmological Constant ($)∗ג as a VEV
Yukawa Couplings χ̄)∗ג /Dωχ) as a VEV

(12.28)
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